Angewandte mand

Supporting Information
© Wiley-VCH 2012

69451 Weinheim, Germany

Divergent Total Synthesis of the Antimitotic Agent Leiodermatolide** Jens Willwacher, Nina Kausch-Busies, and Alois Fürstner*

anie_201206670_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION

Divergent Total Synthesis of the Antimitotic Agent Leiodermatolide

Jens Willwacher, Nina Kausch-Busies, and Alois Fürstner*
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
fuerstner@kofo.mpg.de

List of Contents

Crystallographic Information page 3
Experimental Procedures page 5
Synthesis of the Alcohol Fragment 11 page 5
Synthesis of the Acid Fragment 20 page 11
Esterification and RCAM page 21
Synthesis of the δ-Lactone 28 page 23
Endgame page 27
NMR data comparison of 1 and 2 with Natural Leiodermatolide page 40
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra of New Compounds page 47

Crystallographic Information

Figure S1. Structure of the allylation compound ent-25 in the solid state.

Figure S2. Structure of the allylation compound $\mathbf{2 3}$ in the solid state.

X-ray diffraction data for both compounds were collected using a Bruker AXS X8 Proteum diffractometer housed in front of a FR591 rotating anode equipped with graded multilayer focusing optics ($\mathrm{Cu} \mathrm{K} \alpha, \lambda=1.54184 \AA$) employing ϕ and ω scans to cover reciprocal space up to $67^{\circ} 2 \theta$ with 99% completeness. The structures were solved by direct methods using SHELXS-97, atomic positions and displacement parameters were refined using fullmatrix least-squares based on Fsqd using SHELXL-97. ${ }^{1}$

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre and can be obtained free of charge by applying to: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, United Kingdom, quoting reference numbers CCDC 896726 (23) and 896727 (ent-25).

Crystal data for compound 23: $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}, M=198.25 \mathrm{~g} \mathrm{~mol}^{-1}$, colorless, crystal dimensions $0.30 \times 0.11 \times 0.07 \mathrm{~mm}$, monoclinic $\mathrm{P} 2_{1}$ (no. 4), at $100 \mathrm{~K}, a=9.1535(5), b=$ 5.5655(3), $c=11.1241$ (6) $\AA, \beta=103.613(2), V=550.78(5) \AA^{3}, Z=2, \rho=1.195 \mathrm{Mgm}^{-3}$, $\mu=0.695 \mathrm{~mm}^{-1}$. Integration of raw data yielded a total of 12661 reflections, merged into 1825 unique reflections with Rint $=0.042$ after applying Lorentz, polarisation and absorption correction. Refinement of 138 parameters using all reflections converged at R $=0.027, w R 2=0.066$, highest residual electron density peak $0.1 \AA^{3}$.

Crystal data for compound ent-25: $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}, M=198.25 \mathrm{~g} \mathrm{~mol}^{-1}$, colorless, crystal dimensions $0.64 \times 0.05 \times 0.04 \mathrm{~mm}$, monoclinic $\mathrm{P} 2_{1}$ (no. 4), at $100 \mathrm{~K} a=7.1017$ (4), $b=$ 10.4344(5), $c=8.2612(4) \AA, \beta=113.6280(10), V=560.85(5) \AA^{3}, \mathrm{Z}=2, \rho=1.174$ $\mathrm{Mgm}^{-3}, \mu=0.682 \mathrm{~mm}^{-1}$. Integration of raw data yielded a total of 12794 reflections, merged into1858 unique reflections with Rint $=0.046$ after applying Lorentz, polarisation and absorption correction. Refinement of 131 parameters using all reflections converged at $R=0.031, w R 2=0.084$, highest residual electron density peak $0.2 \AA^{3}$.

[^0]General. All reactions were carried out under Ar in flame-dried glassware. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg/anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}\left(\mathrm{CaH}_{2}\right)$, hexane, toluene $(\mathrm{Na} / \mathrm{K}), \mathrm{MeOH}$ (Mg), DMF (MS 4A), DMSO (distilled over CaH_{2}, stored over MS 4 \AA). Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$ or Florisil ($60-100$ mesh). NMR: Spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AVIII 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.24$ ppm; $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}} \equiv 53.8 \mathrm{ppm}$; residual ${ }^{1} \mathrm{H}: \delta_{\mathrm{H}} \equiv 5.32 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{C}} \equiv 128.0 \mathrm{ppm}$; residual $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}: \delta_{\mathrm{H}} \equiv 7.15 \mathrm{ppm},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}: \delta_{\mathrm{C}} \equiv 39.52 \mathrm{ppm}$, residual $\mathrm{CD}_{2} \mathrm{HS}(\mathrm{O}) \mathrm{CD}_{3}: \delta_{\mathrm{H}} \equiv 2.50$ $\mathrm{ppm})$. IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Mat 95 (Finnigan). Unless stated otherwise, all commercially available compounds (Fluka, Lancaster, Aldrich) were used as received.

Diethyl 2-(diiodomethyl)-2-methylmalonate (4). A solution of diethyl methylmalonate
 (3) $(9.81 \mathrm{~mL}, 57.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added over 30 min to a suspension of $\mathrm{NaH}(1.65 \mathrm{~g}, 69.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, causing the mixture to reach reflux temperature while vigorous evolution of H_{2} was noticed. Once the addition was complete, the mixture was stirred at reflux for 1.5 h before solid $\mathrm{CHI}_{3}(22.6 \mathrm{~g}, 57.0 \mathrm{mmol})$ was added. Stirring was continued at reflux temperature for 12 h before the mixture was cooled to $0^{\circ} \mathrm{C}$ and excess NaH was carefully quenched with aq. $\mathrm{HCl}(1 \mathrm{M}, 100 \mathrm{~mL})$. After stirring for 20 min , the layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 65 \mathrm{~mL})$. The combined organic layers were washed with brine (80 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the title compound as a pale brown oil, which was used in the next without further purification ($24.9 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.73$ (br s, 1 H), 4.18 (dq, $4 \mathrm{H}, J=7.1 \mathrm{~Hz}, 1.4 \mathrm{~Hz}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.25 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=166.0,62.6,62.1,20.3,13.9,-26.0 \mathrm{ppm} ; \mathrm{IR}(\mathrm{film}): \tilde{v}=1731,1447,1380$,

1366, 1261, 1207, 1162, 1093, 1074, 1015, $859 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 440 (12), 313 (9), 241 (22), 213 (27), 195 (17), 167 (12), 113 (7), 85 (12), 41 (16), 39 (23), 29 (100), 27 (15); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{I}_{2} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 462.88737$, found 462.88705. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{2}$
(E)-3-Iodo-2-methylacrylic acid (5). $\mathrm{KOH}(15.9 \mathrm{~g}, 283 \mathrm{mmol})$ and water (60 mL) were
 added to a solution of crude malonate $4(24.8 \mathrm{~g}, 56.3 \mathrm{mmol})$ in EtOH $(180 \mathrm{~mL})$, and the resulting red solution was stirred at reflux temperature for 4 h . After cooling and evaporation of all volatile materials, the residue was dissolved in aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \%, 150 \mathrm{~mL})$, which was then carefully acidified with conc. HCl at $0^{\circ} \mathrm{C}$. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \times 50 \mathrm{~mL})$ was followed by drying of the combined organic layers over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the solvent. The residue was purified by flash chromatography (hexanes/EtOAc, $9: 1+0.5 \% \mathrm{HOAc}$) to yield the title compound as a pale yellow solid $(8.58 \mathrm{~g}, 72 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.00$ $(\mathrm{q}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 2.03 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=$ 169.3, 139.0, 102.1, 19.8 ppm ; IR (film): $\tilde{v}=3079,2966,2596,1682,1593,1409,1379$, 1296, 1235, 1108, 991, 915, 838, 727, $685 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 212 (56), 167 (6), 127 (6), 85 (75), 57 (12), 45 (14), 43 (11), 41 (28), 40 (16), 39 (100), 38 (18), 37 (9), 29 (18); HRMS (EI): m/z: calcd. for $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{I}[M]: 211.93343$, found 211.93359. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{3}$
(\boldsymbol{E})-3-Iodo-2-methylprop-2-en-1-ol. A solution of acid $\mathbf{5}$ ($8.4 \mathrm{~g}, 39.6 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $\mathrm{OH} \quad(25 \mathrm{~mL})$ was added over 20 min to a suspension of $\mathrm{LiAlH}_{4}(1.65 \mathrm{~g}, 43.6 \mathrm{mmol})$
 in $\mathrm{E}_{2} \mathrm{O}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After additional 30 min at this temperature, the ice bath was removed and the mixture stirred at ambient temperature for 2.5 h . The excess LiAlH_{4} was carefully quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}(130 \mathrm{~mL})$ and the mixture diluted with $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{M}, 60 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 40 \mathrm{~mL}$), the combined organic phases were washed with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \%, 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the remaining oil by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 4: 1$) gave the title compound as a

[^1]colorless oil $(3.6 \mathrm{~g}, 49 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.25(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, 2 \mathrm{H}, J$ $=5.4 \mathrm{~Hz}), 1.85-1.81 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.2,77.3,67.1$, 21.3 ppm ; IR (film): $\tilde{v}=3295,2912,2851,1620,1433,1376,1274,1252,1145,1066$, 1008, 942, 829, 771, $665 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 198 (75), 183 (5), 127 (9), 71 (100), 53 (28), 43 (59), 31 (57), 39 (61), 38 (12), 31(34), 29(14), 27(26); HRMS (EI): m/z: calcd. for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{IO}$ [M]: 197.95416, found 197.95410. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{2}$
(\boldsymbol{E})-3-Iodo-2-methylacrylaldehyde (6). $\mathrm{MnO}_{2}(11.1 \mathrm{~g}, 127 \mathrm{mmol})$ was added in three
 portions to a vigorously stirred solution of (E)-3-iodo-2-methylprop-2-en-1-ol ($2.52 \mathrm{~g}, 12.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 mL), causing a slight exothermic reaction. After 3.5 h , the mixture was filtered through a pad of flame-dried Celite, which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined filtrates were evaporated and the residue briefly dried in high vacuum to give the title compound as a pink oil (2.46 g , 98%). Due to the unstable nature of this compound, it was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ containing $4 \AA$ MS and immediately used in the next step. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=9.52(\mathrm{~s}, 1 \mathrm{H}), 7.8(\mathrm{q}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 1.92(\mathrm{~d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta=189.4,150.8,109.4,16.4 \mathrm{ppm}$; IR (film): $\tilde{v}=2921,2842,1691,1591,1294$, 1099, 1027, 1015, 798, $679 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 196 (99), 167 (14), 127 (8), 69 (86), 41 (59), 30 (11), 39 (100), 38 (13), 29 (8); HRMS (EI): m/z: calcd. for $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{IO}$ [M]: 195.93852, found 195.93837.
(2R,3S,E)-((1R,2S)-2-(N-Benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl)
 3-hydroxy-5-iodo-2,4-dimethylpent-4-enoate (8). NEt_{3} $(0.904 \mathrm{~mL}, \quad 6.52 \mathrm{mmol}) \quad$ and $\quad(1 R, 2 S)-2$-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl propionate (7) ${ }^{4}$ (2.61 $\mathrm{g}, 5.43 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ and the solution cooled to $-78^{\circ} \mathrm{C}$. A solution of dicyclohexyboryl triflate ($2.13 \mathrm{~g}, 6.52 \mathrm{mmol}$) in pentane $(12 \mathrm{~mL})$ was then added over 12 min to give a yellow suspension, which was kept at this temperature for 5 h . A solution of freshly prepared aldehyde $\mathbf{6}(2.45 \mathrm{~g}, 12.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was then added and stirring continued for 1.5 h before the cooling bath was removed and the mixture allowed to reach room temperature. After 3 h , the reaction

[^2]was quenched with pH 7 buffer (30 mL) and treated with $\mathrm{MeOH}\left(100 \mathrm{~mL}\right.$) and aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ ($35 \% w / w, 15 \mathrm{~mL}$) overnight. The solvent was removed in vacuo, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and the organic phase washed with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product showed a diastereomeric ratio of 13:1. Purification of the residue by flash chromatography yielded the title compound as a white solid ($2.79 \mathrm{~g}, 76 \%$, single isomer). $[\alpha]_{20}^{D}=+45.0$ (c = 0.95, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.13(\mathrm{~m}, 8 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.86-6.82$ $(\mathrm{m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=16.7 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.7 \mathrm{~Hz}), 4.23(\mathrm{dd}, 1 \mathrm{H}, J=8.9,3.8 \mathrm{~Hz}), 4.09(\mathrm{dq}, 1 \mathrm{H}, J=4.0,7.0 \mathrm{~Hz}), 2.73(\mathrm{~d}, 1 \mathrm{H}, J=$ $4.1 \mathrm{~Hz}, \mathrm{OH}), 2.64-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~d}, 3 \mathrm{H}, J=1.1 \mathrm{~Hz})$, $1.15(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=7.23 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=174.0,146.9,142.6,140.3,138.5,138.1,133.4,132.1,128.5,128.3,128.0,127.6$, $127.2,125.9,81.2,78.6,78.5,56.8,48.2,43.3,22.9,20.9,18.8,14.1,13.3 \mathrm{ppm}$; IR (film): $\tilde{v}=3496,1741,1604,1496,1455,1379,1317,1151,1117,1031,1011,929,858$, 752, 730, 698, $659 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%): 406$ (1), 317 (20), 316 (100), 183 (5), 119 (17), 91 (60), 57 (3), 41 (3); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{NO}_{5} \mathrm{ISNa}\left[M^{+}+\mathrm{Na}\right]$: 698.14076, found 698.14108. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{2}$
(2R,3S,E)-((1R,2S)-2-(N-Benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl)

3-(tert-butyldimethylsilyloxy)-5-iodo-2,4-dimethylpent-4-enoate.

 2,6-Lutidine ($0.863 \mathrm{~mL}, 7.43 \mathrm{mmol}$) was added via syringe to a stirred solution of alcohol $8(2.51 \mathrm{~g}, 3.71 \mathrm{mmol})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ before TBSOTf ($1.28 \mathrm{~mL}, 5.57 \mathrm{mmol}$) was slowly added. After stirring for 2 h at $0^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a white solid, which was used in the next step without further purification ($2.89 \mathrm{~g}, 95 \%$). An analytically pure sample was obtained by flash chromatography (hexanes/EtOAc, 9:1). $[\alpha]_{20}^{D}=+36.3$ ($\mathrm{c}=$ $\left.0.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.30-7.22(\mathrm{~m}$, $3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 6.7(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$,$6.18(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.1 \mathrm{~Hz}), 4,29(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 4.04(\mathrm{dq}, 1 \mathrm{H}, J=6.6,6.6 \mathrm{~Hz}), 2.61(\mathrm{dq}, 1 \mathrm{H}, J=9.1$, $7.3 \mathrm{~Hz}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, 3 \mathrm{H}, J=0.8 \mathrm{~Hz}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $0.80(\mathrm{~s}, 9 \mathrm{H}), 0.74(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}),-0.03(\mathrm{~s}, 3 \mathrm{H}),-0.05 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.9,147.5,142.4,140.4,138.5,138.0,132.9,132.1,128.4,128.4$, $128.2,127.9,127.4,126.4,80.6,79.2,77.7,56.6,48.1,44.7,25.7,22.8,20.9,18.6,18.1$, $14.9,13.8,-5.1,-5.1 \mathrm{ppm}$; IR (film): $\tilde{v}=2956,2935,2857,1743,1605,1455,1379$, 1325, 1254, 1154, 1072, 1030, 1011, 929, 857, 836, 777, 729, 698, 659. cm^{-1}; MS (EI) m / z (\%): 406 (23), 317 (21), 316 (100), 183 (6), 132 (7), 119 (20), 91 (62), 73 (11); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{NO}_{5} \mathrm{ISSiNa}\left[M^{+}+\mathrm{Na}\right]: 812.22724$, found 812.22802. (2S,3S,E)-3-(tert-Butyldimethylsilyloxy)-5-iodo-2,4-dimethylpent-4-en-1-ol. DIBAl-H
 (1 M in toluene, $9.38 \mathrm{~mL}, 9.38 \mathrm{mmol}$) was added over a period of 12 min to a solution of the above silyl ether ($2.89 \mathrm{~g}, 95 \%$ pure, 3.48 mmol) in toluene $(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring 2 h at this temperature, the excess DIBAl-H was carefully quenched with $\mathrm{MeOH}(2 \mathrm{~mL})$. The mixture was diluted with tert-butyl methyl ether (20 mL) and aq. sat. Rochelle's salt solution (30 mL). The resulting mixture was stirred overnight at ambient temperature before the aqueous layer was extracted with tert-butyl methyl ether ($3 \times 30 \mathrm{~mL}$). The combined extracts were washed with brine $(25 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc, 9:1) to give the title compound as a colorless oil $(1.07 \mathrm{~g}, 83 \%$ over two steps $) .[\alpha]_{20}^{D}=-32.3\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.18(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.61(\mathrm{dd}, 1 \mathrm{H}, J=4.5,0.7 \mathrm{~Hz}), 3.60(\mathrm{~d}$, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.44(\mathrm{t}, 1 \mathrm{H}, J=5.68 \mathrm{~Hz}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.06(\mathrm{~s}, 3 \mathrm{H}),-0.02 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.8,82.8,79.3,66.2,38.7,25.8,19.5,18.1,14.0,-4.8,-5.3 \mathrm{ppm}$; IR (film): $\tilde{v}=339,2956,2928,2884,2857,1615,1471,1462,1376,1361,1252,1140$, 1064, 1037, 1004, 982, 938, 834, 774, $672 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 313 (46), 311 (23), 271 (18), 185 (52), 171 (16), 115 (6), 111 (9), 75 (100), 73 (44), 53 (6), 45 (5), 43 (5), 41 (6); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{ISiNa}\left[M^{+}+\mathrm{Na}\right]: 393.07172$, found 393.07146.
(2R,3S,E)-3-(tert-Butyldimethylsilyloxy)-5-iodo-2,4-dimethylpent-4-enal (9). A

solution of $(2 S, 3 S, E)$-3-(tert-butyldimethylsilyloxy)-5-iodo-2,4-dimethylpent-4-en-1-ol ($600 \mathrm{mg}, 1.62 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added to a suspension of Dess-Martin periodinane ($756 \mathrm{mg}, 1.78 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 15 min , the mixture was allowed to warm to room temperature and stirring continued for 2 h . The reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}(1: 1,10 \mathrm{~mL})$, the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was suspended in hexane/EtOAc (9:1) and the resulting suspension filtered through a short pad of SiO_{2}. Concentration of the filtrate under reduced pressure gave the rather unstable aldehyde, which was immediately used in the next step ($586 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.73(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 2.59$ $(\mathrm{dqd}, 1 \mathrm{H}, J=8.4,7.1,2.5 \mathrm{~Hz}), 1.79(\mathrm{~d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.85(\mathrm{~s}$, 9H), $0.03(\mathrm{~s}, 3 \mathrm{H}),-0.03 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.8,147.6$, 80.1, 79.0, 50.1, 25.6, 19.0, 18.0, 10.8, -4.8, -5.4 ppm .

tert-Butyl-((1E,3S,4S,5Z)-1-iodo-2,4-dimethylnona-1,5-dien-7-yn-3-yloxy)dimethylsi-

 lane. A precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of KHMDS $(0.729 \mathrm{~g}, 3.66 \mathrm{mmol})$ in THF (6 mL) was added to a solution of sulfone $10(1.00 \mathrm{~g}$, $3.98 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ at $-55^{\circ} \mathrm{C}$, causing a color change to darkred. After stirring for 30 min at this temperature, a precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of aldehyde $9(586 \mathrm{mg}, 1.59 \mathrm{mmol})$ in THF (3 mL) was added dropwise and the resulting mixture stirred for 13 h at $-55^{\circ} \mathrm{C}$ before it was poured into brine $(15 \mathrm{~mL})$ and warmed to ambient temperature. tert-Butyl methyl ether (20 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added, the aqueous phase was extracted with tert-butyl methyl ether ($2 \times 20 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification of the residue by flash chromatography yielded the title compound as a colorless oil (364 mg, 56\%). $[\alpha]_{20}^{D}$ $=+100.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.09(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{dd}, 1 \mathrm{H}$, $J=10.3,10.0 \mathrm{~Hz}), 5.39(\mathrm{dq}, 1 \mathrm{H}, J=10.8,2.3 \mathrm{~Hz}), 3.98(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 2.92(\mathrm{ddq}$, $1 \mathrm{H}, J=9.3,6.5,6.4 \mathrm{~Hz}), 1.94(\mathrm{~d}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}), 1.76(\mathrm{~d}, 3 \mathrm{H}, J=0.9 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.9 \mathrm{~Hz}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.06 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=149.2,143.7,109.8,89.4,80.8,78.0,76.6,39.5,25.7,20.6,18.2,17.1,4.4,-4.9,-5.2$
ppm; IR (film): $\tilde{v}=2956,2928,2885,2856,2332,2330,2324,1615,1471,1462,1361$, 1252, 1081, 1019, 1005, 938, 862, 833, 773, 749, $673 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 347 (6), 312 (16), 311 (100), 146 (7), 127 (8), 115 (12), 91 (6), 75 (13), 73 (70), 59 (9), 53 (7); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{OISiNa}\left[M^{+}+\mathrm{Na}\right]: 427.09246$, found 427.09258.
(1E,3S,4S,5Z)-1-Iodo-2,4-dimethylnona-1,5-dien-7-yn-3-ol (11). TBAF (1 m in THF,

$1.42 \mathrm{~mL}, 1.42 \mathrm{mmol}$) was added to a solution of the above silyl ether ($230 \mathrm{mg}, 0.568 \mathrm{mmol}$) in THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture stirred at this temperature for 3.5 h before it was quenched with water (5 mL), sat. aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and tert-butyl methyl ether $(10 \mathrm{~mL})$. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 10 \mathrm{~mL}$), and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography (hexanes/EtOAc, 9:1) to yield alcohol $\mathbf{1 1}$ as a colorless oil (163 mg, 99\%). $[\alpha]_{20}^{D}=+24.0\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $6.24(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{dd}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}, 10.1 \mathrm{~Hz}), 5.55(\mathrm{dq}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}, 2.1 \mathrm{~Hz}), 3.91$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, 3.1 \mathrm{~Hz}), 2.97(\mathrm{dqd}, 1 \mathrm{H}, J=9.2,7.2,7.1 \mathrm{~Hz}), 1.97(\mathrm{~d}, 3 \mathrm{H}, J=$ $2.2 \mathrm{~Hz}), 1.88(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 1.83(\mathrm{~d}, 3 \mathrm{H}, J=0.8 \mathrm{~Hz}), 0.90 \mathrm{ppm}(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=148.2,142.9,111.8,90.8,80.7,79.6,76.0,38.8,19.4$, 16.8, 4.4 ppm ; IR (film): $\tilde{v}=3535,3419,2962,2916,2873,2853,1615,1454,1399$, 1377, 1271, 1143, 1117, 1072, 1005, 933, 753, $671 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%): 290$ (1), 197 (59), 163 (10), 95 (9), 94, (100), 93 (16), $91(26) 79$ (89), 77 (40), 60 (5), 65 (9), 53 (10), 51 (7), 43 (12), 41 (6), 39 (25), 29 (5); HRMS (EI): $m / z:$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{OI}[M]$: 290.01676, found 290.01657.
(S)-4-Benzyl-3-((2S,3R)-3-hydroxy-2-methylpentanoyl)oxazolidin-2-one. Bu ${ }_{2}$ BOTf (1
 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 49 \mathrm{~mL}, 49 \mathrm{mmol}$) was slowly added to a solution of ketone $\mathbf{1 2}(9.7 \mathrm{~g}, 41.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(92 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}$ $(7.6 \mathrm{~mL}, 55 \mathrm{mmol})$ was then added at such a rate as to keep the internal temperature below $2^{\circ} \mathrm{C}$. Once the addition was complete, the mixture was cooled to $-78^{\circ} \mathrm{C}$ before freshly distilled propionaldehyde $(4.4 \mathrm{~mL}$, 46.4 mmol) was introduced. The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ before the CO_{2} /acetone bath was replaced by an ice bath. Stirring was continued for 1 h and the reaction quenched with aq. phosphate buffer ($46 \mathrm{~mL}, \mathrm{pH} 7$) and MeOH (138 mL)
($\mathrm{T}<-6^{\circ} \mathrm{C}$). Next, a $1: 2$ mixture of MeOH and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ (138 mL) was carefully added such that the internal temperature never rose above $10^{\circ} \mathrm{C}$. The mixture was stirred for 1 h once the addition was complete. After concentration on a rotary evaporator (bath-temperature ca. $30^{\circ} \mathrm{C}$), $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added to the slurry and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 50 \mathrm{~mL})$. The combined extracts were washed with aq. sat. $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ and brine (12 mL) before being dried over MgSO_{4}. Evaporation of the solvent and flash chromatography (hexanes/EtOAc, 3:1) of the residue, followed by recrystallization of the product from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes afforded the title compound as a white solid $(11.71 \mathrm{~g}, 97 \%) .[\alpha]_{20}^{D}=+20.8\left(c=1.38, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{ddq}, 1 \mathrm{H}, \mathrm{J}=$ 13.7, 6.9, 3.4 Hz), $4.27-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.24$ (dd, $1 \mathrm{H}, J=13.4,3.3 \mathrm{~Hz}$), $2.76(\mathrm{dd}, 1 \mathrm{H}, ~ J=13.4,9.5 \mathrm{~Hz}$), $1.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.66-1.32$ $(\mathrm{m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.96 \mathrm{ppm}(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta=177.6,153.0,135.0,129.4,129.0,127.4,73.0,66.2,55.1,41.7,37.8,26.7$, $10.4,10.2 \mathrm{ppm}$; IR (film): $\tilde{v}=3466,2969,1778,1696,1455,1385,1210,1113,1030$, 969, 762, 749, $702 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 292 (7), 291 (30), 273 (9), 244 (46), 233 (30), 178 (42), 158 (100), 142 (12), 134 (63), 133 (20), 117 (38), 116 (23), 115 (49), 97 (26), 91 (56), 86 (80), 77 (7), 69 (34), 57 (45), 42 (15); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 314.13628$, found 314.13637. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{5}$
(S)-1-((S)-4-Benzyl-2-oxo-oxazolidin-3-yl)-2-methylpentane-1,3-dione (13). The aldol

product obtained in the previous step $(5.70 \mathrm{~g}, 19.6 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(92 \mathrm{~mL})$ and DMSO $(92 \mathrm{~mL})$ and the solution cooled to $-15{ }^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(8.20 \mathrm{ml}, 58.8 \mathrm{mmol})$ was introduced followed by a very slow addition of a solution of SO_{3} pyridine $(9.40 \mathrm{~g}$, 58.8 mmol) in DMSO (92 mL). The resulting mixture was stirred for 3 h . For workup, $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{~mL})$ was added and the organic phase washed with aq. $\mathrm{KHSO}_{4}(1 \mathrm{~m}, 400 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(400 \mathrm{~mL})$ and brine $(400 \mathrm{~mL})$. After drying of the organic layer over MgSO_{4} and concentration in vacuo, the residue was purified by flash chromatography

[^3](hexanes/EtOAc, $6: 1 \rightarrow 3: 1$) to give product 13 as a white solid ($4.96 \mathrm{~g}, 88 \%$). $\mathrm{Mp}=71-$ $72{ }^{\circ} \mathrm{C}$ (hexanes); $[\alpha]_{20}^{D}=+137.4\left(c=0.91, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.39-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $4.31-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{dd}, 1 \mathrm{H}, J=13.3,3.3 \mathrm{~Hz}), 2.85-2.57(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}), 1.09 \mathrm{ppm}(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=208.2,170.3$, 153.8, 135.1, 129.4, 129.0, 127.3, 66.5, 55.3, 52.7, 38.0, 34.0, 12.9, 7.5 ppm ; IR (film): \tilde{v} $=2985,1760,1718,1702,1455,1390,1360,1250,1213,1125,1082,1082,1051,1010$, 974, 763, 748, $703 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%): 289$ (15) [$\left.M^{+}\right], 260$ (15), 233 (15), 178 (10), 142 (25), 117 (40), 91 (25), 65 (5), 57 (100), 42 (5); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 312.12062$, found 312.12043. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{6}$
But-2-ynal (14). But-2-ynol ($5.0 \mathrm{~mL}, 66 \mathrm{mmol}$) was added to a vigorously stirred
 suspension of MnO_{2} (activated, $65 \mathrm{~g}, 748 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$. Additional $\mathrm{Et}_{2} \mathrm{O}(17 \mathrm{~mL})$ was then added and the mixture stirred at ambient temperature overnight. After filtration through a pad of Celite and careful evaporation of the filtrate at $\leq 40^{\circ} \mathrm{C}$ bath temperature, the residue was distilled (b.p. $75-80^{\circ} \mathrm{C}$) under Ar to give but-2-ynal as a pale yellow liquid, which must be stored at low temperature $(1.99 \mathrm{~g}, 44 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.13(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.05 ppm $(\mathrm{d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{7}$

(2S,4R,5R)-1-((S)-4-Benzyl-2-oxo-oxazolidin-3-yl)-5-hydroxy-2,4-dimethyloct-6-yne-

 1,3-dione (15). $\quad \mathrm{Et}_{3} \mathrm{~N} \quad(0.78 \mathrm{~mL}, 5.66 \mathrm{mmol})$ was added dropwise to a solution of $\operatorname{Sn}(\mathrm{OTf})_{2}(2.36 \mathrm{~g}, 5.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27 \mathrm{~mL})$. After cooling to $-30^{\circ} \mathrm{C}$, a solution of ketone $13(1.56 \mathrm{~g}, 13.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was slowly introduced and the mixture stirred for 1 h at this temperature before it was cooled to $78{ }^{\circ} \mathrm{C}$ and but-2-ynal ($1.8 \mathrm{ml}, 29 \mathrm{mmol}$) was added dropwise. After an additional 45 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and added to a vigorously stirred aq.

[^4]solution of $\mathrm{NaHSO}_{4}(1 \mathrm{~m}, 80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. This slurry was stirred for 10 min before the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x} 80 \mathrm{~mL})$. The combined extracts were washed with aq. sat. $\mathrm{NaHCO}_{3}(120 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash chromatography of the residue afforded the title compound as a white solid ($1.05 \mathrm{~g}, 55 \%$, $88 \% \mathrm{brsm}) \cdot[\alpha]_{20}^{D}=+101.1\left(c=0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 4.78-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~s}$, $1 \mathrm{H}), 4.31-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, 1 \mathrm{H}, J=9.1,2.8 \mathrm{~Hz}), 3.28(\mathrm{dd}, 1 \mathrm{H}, J=13.4,3.2 \mathrm{~Hz})$, $3.02-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, 1 \mathrm{H}, J=13.3,9.6 \mathrm{~Hz}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 1.82(\mathrm{~d}, 3 \mathrm{H}, J=$ $1.8 \mathrm{~Hz}), 1.47(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.36 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=209.3,170.5,153.7,135.0,129.3,129.0,127.4,82.5,78.0,66.4,63.3,55.2$, $51.8,50.3,37.9,12.7,12.0,3.4 \mathrm{ppm}$; IR (film): $\tilde{v}=3511,2940,1775,1716,1690,1454$, 1357, 1212, 1117, 998, 913, 762, 735, $703 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 357 (2), 339 (2), 311 (2), 289 (40), 260 (17), 233 (30), 204 (1), 178 (29), 159 (3), 156 (5), 142 (19), 134 (38), 125 (33), 117 (78), 112 (100), 107 (26), 101 (16), 97 (3), 91 (74), 86 (73), 83 (25), 79 (24), 77 (13), 69 (32), 65 (19), 57 (89), 42 (30), 39 (28), 29 (26); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 380.14685$, found 380.14704.

(S)-4-Benzyl-3-((2S,3R,4S,5R)-3,5-dihydroxy-2,4-dimethyloct-6-ynoyl)oxazolidin-2-

 one. $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}(3.72 \mathrm{~g}, 14.2 \mathrm{mmol})$ was dissolved in $\mathrm{MeCN}(260 \mathrm{~mL})$ and $\mathrm{HOAc}(160 \mathrm{~mL})$ and the resulting mixture cooled to $-50^{\circ} \mathrm{C}$. A solution of compound $15(1.01 \mathrm{~g}$, 2.83 mmol) in $\mathrm{MeCN}(34 \mathrm{~mL})$ was added and the mixture warmed to $+10^{\circ} \mathrm{C}$ overnight. The mixture was then poured into a pre-cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of sat. aq. solution of Rochelle salt (140 mL) and tert-butyl methyl ether $(140 \mathrm{~mL})$. Under vigorous stirring, saturated NaHCO_{3}-solution and solid NaHCO_{3} were added in small portions until no further gas evolution could be observed. The phases were separated and the aqueous layer was extracted with tert-butyl methyl ether ($4 \times 100 \mathrm{~mL}$). The combined extracts were washed with brine, dried over MgSO_{4} and concentrated to obtain the desired diol $(1.00 \mathrm{~g}, 98 \%)$ as a mixture of diastereomers (2:92:4:1:0.5 as determined by HPLC: 50 mm Ultra HAT Pro 18, $120 \mathrm{~A}, 2 \mu \mathrm{~m}, \varnothing 3.0 \mathrm{~mm}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=$ 60:40, $0.5 \mathrm{~mL} / \mathrm{min}, 308 \mathrm{~K}, 27.4 \mathrm{MPa}) .[\alpha]_{20}^{D}=+36.0\left(c=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~s}$, $1 \mathrm{H}), 4.27-4.15(\mathrm{~m}, 3 \mathrm{H}), 4.14-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $13.4,3.4 \mathrm{~Hz}), 2.82-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{t}, 3 \mathrm{H}, J=3.6 \mathrm{~Hz}), 1.24$ (dd, 3H, $J=13.8,7.0 \mathrm{~Hz}), 0.91-0.83(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.1$, $152.7,134.9,129.4,129.0,127.5,81.9,78.3,73.7,67.3,66.2,54.9,39.7,39.1,37.8,12.9$, 9.7, 3.6; IR (film): $\tilde{v}=3417,2974,2921,1778,1698,1455,1388,1287,978,762,702$ cm^{-1}; MS (EI) m / z (\%): 359 (1), 341 (3), 308 (1), 273 (68), 262 (7), 244 (3), 233 (38), 183 (3), 178 (50), 165 (14), 159 (4), 149 (4), 142 (12), 136 (11), 134 (29), 126 (13), 117 (57), 109 (34), 103 (8), 96 (100), 91 (71), 86 (74), 80 (44), 77 (11), 69 (35), 67 (11), 65 (17), 57 (51), 41 (32), 39 (18), 29 (23), 27 (9); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}\left[M^{+}\right.$ $+\mathrm{Na}]: 382.16250$, found 382.16199 .
(S)-4-Benzyl-3-((2S,3R,4S,5R)-5-(tert-butyldimethylsilyloxy)-3-hydroxy-2,4-

dimethyloct-6-ynoyl)oxazolidin-2-one. $\mathrm{Et}_{3} \mathrm{~N} \quad(0.97 \mathrm{~mL}$, $4.2 \mathrm{mmol})$ and TBSOTf $(0.78 \mathrm{~mL}, \quad 5.6 \mathrm{mmol})$ were successively added to a solution of the above diol $(1.00 \mathrm{~g}$, $2.78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring for 3 h , the reaction was quenched with sat. aq. NaHCO_{3} and the resulting mixture warmed to ambient temperature. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc, 9:1 $\rightarrow 7: 1$) to obtained the title compound as a colorless oil $(1.17 \mathrm{~g}, 89 \%) .[\alpha]_{20}^{D}=+36.8\left(c=1.64, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.62(\mathrm{~m}$, $2 \mathrm{H}), 4.26-4.05(\mathrm{~m}, 3 \mathrm{H}), 3.91(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 3.85(\mathrm{qd}, 1 \mathrm{H}, J=6.9,2.4 \mathrm{~Hz}), 3.31$ $(\mathrm{dd}, 1 \mathrm{H}, J=13.3,3.2 \mathrm{~Hz}), 2.74(\mathrm{dt}, 1 \mathrm{H}, J=16.7,8.4 \mathrm{~Hz}), 1.86-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.26-$ $1.18(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=176.5,153.0,135.4,129.4,128.9,127.3,82.1,78.5,72.6$, $66.4,66.1,55.6,41.8,40.3,37.8,25.8,18.1,11.7,9.1,3.5,-4.5,-5.4 \mathrm{ppm}$; IR (film): $\tilde{v}=$ $3509,2928,1782,1702,1680,1455,1387,1360,1285,1242,1209,1104,1050,1019$, 984, 938, 836, 777, 702, $678 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 473 (M+, 6), 416 (21), 398 (3), 348 (4), 341 (3), 337 (7), 336 (32), 324 (329, 318 (10), 306 (14), 290 (5), 273 (8), 262 (4), 252 (44), 239 (14), 233 (14), 183 (100), 178 (41), 165 (5), 159 (42), 147 (85), 143 (53),

136 (5), 133 (6), 127 (9), 119 (14), 117 (32), 115 (25), 109 (20), 97 (14), 91 (27), 81 (8), 77 (6), 75 (72), 73 (49), 57 (11), 29 (5); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SiNa}$ $\left[M^{+}+\mathrm{Na}\right]: 496.24897$, found 496.24907.

(2S,3R,4S,5R)-5-(tert-Butyldimethylsilyloxy)-3-hydroxy- N-methoxy- $N, 2,4-$

trimethyloct-6-ynamide (16). AlMe_{3} (2 m in heptane,
 $4.2 \mathrm{~mL}, \quad 8.31 \mathrm{mmol}$) was carefully added (exothermic reaction) to a solution of N,O-dimethylhydroxylamine hydrochloride ($0.811 \mathrm{~g}, 8.31 \mathrm{mmol}$) in THF $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 15 min at this temperature and for 75 min at room temperature. The mixture was then cooled to $-70^{\circ} \mathrm{C}$ before a solution of (S)-4-benzyl-3-($(2 S, 3 R, 4 S, 5 R)-5-$ (tert-butyldimethylsilyloxy)-3-hydroxy-2,4-dimethyloct-6-ynoyl)oxazolidin-2-one (see above, $1.05 \mathrm{~g}, 2.22 \mathrm{mmol}$) in THF (10 mL) was slowly added. The mixture was warmed to $-10^{\circ} \mathrm{C}$ over 8 h before it was poured into a chilled $\left(0^{\circ} \mathrm{C}\right)$ sat. aq. Rochelle salt solution $(300 \mathrm{~mL})$. The resulting suspension was stirred for 45 min and then repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc, 6:1) to afford the title compound as a colorless oil that solidified in the fridge ($715 \mathrm{mg}, 90 \%$). $[\alpha]_{20}^{D}=+46.5\left(c=0.79, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} \approx 13{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.86-$ $4.82(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=9.2,2.4 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.06$ - $2.92(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~d}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz}),, 1.73-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$), $0.95\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}\right.$), $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.08 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.3,80.5,80.3,71.7,63.1,61.4,42.2,36.0,32.0,25.8,18.1,10.4$, 9.5, 3.4, -4.6, -5.3 ppm ; IR (film): $\tilde{v}=3458,2956,2932,2857,1639,1462,1416,1388$, 1361, 1292, 1251, 1178, 1146, 1113, 1056, 1016, 998, 863, 833, 776, $684 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 357 (1), 326 (2), 302 (3), 300 (47), 297 (13), 241 (9), 232 (3), 225 (6), 220 (34), 217 (24), 208 (27), 183 (100), 174 (7), 164 (16), 159 (8), 153 (16), 143 (24), 138 (7), 127 (7), 117 (30), 115 (42), 109 (17), 97 (19), 87 (9), 85 (11), 81 (12), 75 (90), 73 (64), 62 (8), 61 (12), 59 (12), 45 (7), 41 (8), 29 (14); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}$ [$\left.M^{+}+\mathrm{Na}\right]: 380.22276$, found 380.22281 .
 trimethyloct-6-ynamide (17). $i \mathrm{Pr}_{2} \mathrm{NEt}(3.01 \mathrm{~mL}, 18.2 \mathrm{mmol})$ and $\mathrm{MOMCl}(0.691 \mathrm{~mL}, 9.10 \mathrm{mmol})$ were added to a solution of $\mathbf{1 6}(650 \mathrm{mg}, 1.82 \mathrm{mmol})$ in DMF (5 mL) and the resulting slightly fuming mixture stirred at $50^{\circ} \mathrm{C}$ for 18 h . After cooling, tert-butyl methyl ether $(20 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$ were introduced and the aqueous phase was extracted with tert-butyl methyl ether ($3 \times 15 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography (hexanes/EtOAc, $29: 1 \rightarrow 8: 1)$ to furnish product 17 as a colorless oil ($651 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=4.64-4.43(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.7 \mathrm{~Hz}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}$, $3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{qd}, 1 \mathrm{H}, J=6.9,2.7 \mathrm{~Hz}), 1.80(\mathrm{~d}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz}), 1.78-1.68(\mathrm{~m}$, $1 \mathrm{H}), 1.09(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.08$ $\operatorname{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,98.1,96.0,80.9,79.6,62.7,61.0$, $56.3,44.2,38.1,25.8,18.2,14.2,10.9,9.7,3.5,-3.9,-5.0 \mathrm{ppm}$; IR (film): $\tilde{v}=2931,2890$, 2857, 1672, 1463, 1408, 1377, 1250, 1168, 1143, 1031, 1002, 940, 920, 834, 776, 673 cm^{-1}; MS (EI) m/z (\%): 370 (5), 357 (3), 356 (12), 344 (51), 341 (10), 312 (6), 300 (5), 282(11), 274 (16), 271 (34), 260 (8), 253 (7), 239 (10), 234 (14), 227 (15), 223 (18), 208 (32), 183 (62), 179 (25), 157 (19), 149 (12), 127 (12), 119 (15), 115 (28), 105 (16), 97 (28), 89 (73), 73 (84), 59 (179, 45 (100), 29 (6) ; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]: 424.24897$, found 424.24886.

(3S,4R,5S,6R)-6-(tert-Butyldimethylsilyloxy)-4-(methoxymethoxy)-3,5-dimethylnon-

7-yn-2-one. MeMgCl (2.76 m in THF, $1.76 \mathrm{~mL}, 4.86 \mathrm{mmol}$) was added dropwise to a solution of compound $\mathbf{1 7}(650 \mathrm{mg}, 1.62 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 2 h. The reaction was quenched with brine (15 mL), the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the desired ketone as a colorless oil which was used as such in the next step ($562 \mathrm{mg}, 97 \%$, > 98% pure). An analytically pure sample was obtained by flash chromatography (hexanes/EtOAc, 29:1 $\rightarrow 8: 1$). $[\alpha]_{20}^{D}=+64.1\left(c=0.88\right.$, hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.65-4.43(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{dd}, 1 \mathrm{H}, J=9.2,1.9 \mathrm{~Hz}), 3.21(\mathrm{~s}$, $3 \mathrm{H}), 2.58(\mathrm{qd}, 1 \mathrm{H}, J=6.9,1.8 \mathrm{~Hz}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz}), 1.79-1.70(\mathrm{~m}$,
$1 \mathrm{H}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}),, 0.98(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.09$ ppm (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=210.0$, 97.9, 81.4, 80.5, 79.9, 62.7, 55.9, 49.5, 44.1, 28.1, 25.9, 18.2, 11.0, 8.2, 3.5, $-3.8,-4.5 \mathrm{ppm}$; IR (film): $\tilde{v}=2931,2857$, 1716, 1462, 1360, 1251, 1188, 1142, 1090, 1058, 1032, 918, 834, 777, $677 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 311 (1), 299 (1), 293 (3), 255 (4), 239 (12), 237 (99, 229 (59, 227 (9), 225 (4), 197 (27), 183 (86), 163 (46), 159 (27), 157 (15), 153 (15), 119 (19), 115 (18), 97 (21), 89 (57), 75 (55), 74 (6), 59 (17), 45 (100), 43 (46), 41 (8); HRMS (ESI): $m / z: ~ c a l c d . ~ f o r ~$ $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]: 379.22751$, found 379.22734.
(4S,5R,6S,7R)-7-(tert-Butyldimethylsilyloxy)-5-(methoxymethoxy)-3,4,6-
 trimethyldec-1-en-8-yn-3-ol (18). Vinylmagnesium bromide (1.0 m in THF, $3.15 \mathrm{~mL}, 3.15 \mathrm{mmol}$) was slowly added at $-78^{\circ} \mathrm{C}$ to a solution of the ketone obtained in the previous step (562 mg , 1.58 mmol) in THF (15 mL). The mixture was slowly warmed to ambient temperature (2 h) and stirred for an additional 2 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was then introduced and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 12 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1 $\rightarrow 8: 1$) to provide alcohol 18 as a mixture of isomers $\left(2: 1,{ }^{1} \mathrm{H}\right.$ NMR $)(530 \mathrm{mg}, 87 \%) .[\alpha]_{20}^{D}=+47.4\left(c=0.69, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, data given for the major isomer): $\delta=5.92-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.12-$ $4.95(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, $1.89-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 1 \mathrm{H}), 1.18(\mathrm{~d}, 2 \mathrm{H}, J=0.7 \mathrm{~Hz}), 1.03-$ $1.01(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 3 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 9 \mathrm{H}), 0.16-0.05 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data given for the major isomer): $\delta=146.7,111.5,99.5,82.7$, $81.4,80.4,75.9,63.1,55.8,44.5,41.9,27.3,25.9,18.1,11.2,7.1,3.5,-3.6,-5.0$; IR (film): $\tilde{v}=3483,2931,2857,1462,1380,1361,1250,1209,1143,1032,920,833,814$, $776,678 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%): 384,339,253$ (1), 215 (4), 185 (11), 183 (100), 157 (9), 143 (10), 127 (7), 119 (7), 115 (9), 97 (11), 89 (22), 75 (24), 73 (37), 59 (6), 45 (34) ; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]: 407.25881$, found 407.25918. (5S,6S,7R)-5-((R,E)-5-Bromo-3-methylpent-3-en-2-yl)-6,9,9,10,10-pentamethyl-7-(prop-1-ynyl)-2,4,8-trioxa-9-silaundecane (19). Pyridine ($0.32 \mathrm{~mL}, 3.92 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a solution of alcohol $\mathbf{1 8}(502 \mathrm{mg}, 1.31 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6.1 \mathrm{~mL})$, followed
by very slow addition of $\mathrm{PBr}_{3}(1.0 \mathrm{~m}$ in toluene, $3.13 \mathrm{~mL}, 3.13 \mathrm{mmol})$. The resulting mixture was stirred for 3 h at $0{ }^{\circ} \mathrm{C}$ before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The reaction was carefully quenched with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 20 \mathrm{~mL}\right.$), the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a short pad of SiO_{2} and evaporated. The residue was very sensitive and therefore immediately used in the next reaction ($556 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=5.49-5.42(\mathrm{~m}, 1 \mathrm{H}), 4.95$ (ddd, $1 \mathrm{H}, J=4.8,2.3,2.3 \mathrm{~Hz}), 4.60(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.47(\mathrm{~d}$, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.7 \mathrm{~Hz}), 3.66(\mathrm{dd}, 2 \mathrm{H}, J=8.4,2.1 \mathrm{~Hz}), 3.17(\mathrm{~s}$, $3 \mathrm{H}), 2.16(\mathrm{dq}, 1 \mathrm{H}, J=6.8,1.1 \mathrm{~Hz}), 2.04-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz}), 1.50(\mathrm{~d}$, $3 \mathrm{H}, J=2.2 \mathrm{~Hz}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.36(\mathrm{~s}$, 3 H), $0.28 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{BrO}_{3} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]$: 469.17442, found 469.17489.
(6R,7S,8S,9R,E)-Ethyl 9-(tert-butyldimethylsilyloxy)-7-(methoxymethoxy)-5,6,8-tri-
 methyldodec-4-en-10-ynoate. $n \mathrm{BuLi}(1.6 \quad \mathrm{M}$ in hexanes, $14.6 \mathrm{~mL}, 23.4 \mathrm{mmol}$) was added to a solution of diisopropylamine ($3.47 \mathrm{~mL}, 24.7 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture stirred for 1 h .

In parallel, CuI ($8.9 \mathrm{~g}, 46.8 \mathrm{mmol}$) was suspended in THF (40 mL) and the suspension cooled to $-110{ }^{\circ} \mathrm{C}$ (cooling bath: $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CO}_{2} / \mathrm{N}_{2}$). $\mathrm{EtOAc}(2.43 \mathrm{~mL}, 24.7 \mathrm{mmol}$) was added via syringe followed by the very slow addition of the freshly prepared LDA-solution via canula. The mixture was warmed over 3 h to $-30^{\circ} \mathrm{C}$, causing the color of the slurry from grey to yellow-brown. A solution of allyl bromide 19 ($580 \mathrm{mg}, 1.30 \mathrm{mmol}$) in THF (5 mL) was then slowly introduced and the mixture stirred for 2.5 h . Prior to work up, the suspension was cooled to $-60^{\circ} \mathrm{C}$ before the reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}\left(9: 1 ; 63 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}, 17.5 \mathrm{~mL} 30 \%\right.$ aqueous $\mathrm{NH}_{4} \mathrm{OH}$, filled up to 350 mL with $\mathrm{H}_{2} \mathrm{O}$). The aqueous phase was repeatedly extracted with tert-butyl methyl ether, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography of the residue (hexanes/EtOAc, 100:0 \rightarrow 19:1) afforded the title compound as a pale yellow oil (369 mg, 62%). $[\alpha]_{20}^{D}=+16.0$ (c $\left.=0.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.17(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.56(\mathrm{ddd}, 1 \mathrm{H}$,
$J=5.6,2.1,2.0 \mathrm{~Hz}), 4.52(\mathrm{dd}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.11(\mathrm{q}, 2 \mathrm{H}, J=$ 7.1 Hz), $3.61(\mathrm{dd}, 1 \mathrm{H}, J=7.8,3.6 \mathrm{~Hz}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 4 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 1 \mathrm{H})$, $1.80(\mathrm{~d}, 3 \mathrm{H}, J=2.1 \mathrm{~Hz}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.96$ (dd, $6 \mathrm{H}, J=6.9,4.7 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.09 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,138.98,123.1,98.0,81.2,80.6,80.6,63.2,60.2,55.9,44.3$, $42.8,34.2,25.8,23.6,18.2,15.8,14.2,12.5,11.1,3.4,-4.1,-5.1 \mathrm{ppm}$; IR (film): $\tilde{v}=$ 2956, 2929, 2857, 1727, 1462, 1374, 1249, 1143, 1116, 1093, 1033, 919, 835, 814, 777, $676 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%): 439,397$ (1), 365 (1), 329 (4), 283 (13), 253 (3), 211 (6), 183 (100), 169 (11), 157 (17), 115 (9), 95 (17), 89 (17), 73 (29), 45 (31); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]: 477.30067$, found 477.30085 .
(6R,7S,8S,9R,E)-9-(tert-Butyldimethylsilyloxy)-7-(methoxymethoxy)-5,6,8-trimethyl-
 dodec-4-en-10-ynoic acid (20). TMSOK (521 mg, 4.06 mmol) was added to a solution of the ethyl ester described above ($369 \mathrm{mg}, 0.812 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(48 \mathrm{~mL})$.

The suspension was stirred for 48 h before being carefully neutralized with solid CO_{2} and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with EtOAc (5 x 25 mL) and the combined extracts were washed with brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude acid 20, obtained as a pale yellow oil was judged pure and therefore used without further purification in the next step (347 mg , quant.). $[\alpha]_{20}^{D}=+44.7(c=0.75$, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.5-9.5(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.16(\mathrm{t}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz})$, $4.56-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.60(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.8,3.5 \mathrm{~Hz}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $2.7 \mathrm{~Hz}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}$, 3 H), $0.08 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.7$ 139.3, 122.8, 98.0, 81.2, 80.7, 80.6, 63.2, 55.9, 44.3, 42.8, 33.8, 25.9, 23.4, 18.2, 15.8, 12.5, 11.1, 3.5, -4.1, -5.0 ppm; IR (film): $\tilde{v}=3095,2929,2857,2333,2171,1712,1463,1377,1250,1143,1033$, 923, 834, 777, $676 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%): 411,337$ (1), 307 (3), 283 (12), 227 (6), 183 (100), 173 (8), 157 (16), 154 (14), 115 (9), 97 (8), 89 (14), 75 (16), 73 (30), 45 (48); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]: 449.26937$, found 449.26952.
($6 R, 7 S, 8 S, 9 R, E)-((1 E, 3 S, 4 S, 5 Z)-1-I o d o-2,4-d i m e t h y l n o n a-1,5-d i e n-7-y n-3-y l) \quad 9-(t e r t-$ butyldimethylsilyloxy)-7-(methoxymethoxy)-5,6,8-trimethyldodec-4-en-10-ynoate

(29). $\mathrm{EDCI} \cdot \mathrm{HCl}(83.1 \mathrm{mg}, 0.433 \mathrm{mmol})$ was added to a solution of alcohol $11(114 \mathrm{mg}, 0.393 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.8 \mathrm{~mL})$ and the resulting mixture cooled to $0^{\circ} \mathrm{C}$. Next, DMAP ($52.9 \mathrm{mg}, 0.433 \mathrm{mmol}$) was introduced in three portions and the mixture stirred for 10 min before a solution of acid $20(185 \mathrm{mg}, 0.433 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was slowly added. Stirring was continued for 30 min at $0^{\circ} \mathrm{C}$ before the ice bath was removed. After 5 h at ambient temperature, the mixture was poured into brine $(10 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc, 29:1 \rightarrow 19:1) to give the title compound as a colorless oil (244 mg, 89\%). $[\alpha]_{20}^{D}=+80.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $6.26(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{dd}, 1 \mathrm{H}, J=10.1,10.0 \mathrm{~Hz}), 5.43(\mathrm{dq}, 1 \mathrm{H}, J=10.7,2.2 \mathrm{~Hz}), 5.19(1 \mathrm{H}$, d, $J=7.4 \mathrm{~Hz}), 5.16-5.10(\mathrm{brt}, 1 \mathrm{H}), 4.56-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.43$ $(\mathrm{d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.60(\mathrm{dd}, 1 \mathrm{H}, J=7.7,3.6 \mathrm{~Hz}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{ddq}, 1 \mathrm{H}, J=9.3$, $7.1,7.1 \mathrm{~Hz}), 2.37-2.27(\mathrm{~m}, 4 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz}), 1.83(\mathrm{~d}$, $3 \mathrm{H}, J=0.8 \mathrm{~Hz}), 1.80(\mathrm{~d}, 3 \mathrm{H}, J=2.1 \mathrm{~Hz}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H})$, $0.08 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,144.6,142.1,139.0,123.0$, $111.0,98.0,90.3,81.2,80.8,80.7,80.4,80.1,76.1,63.3,56.0,44.4,42.8,37.1,34.3$, $25.9,23.7,20.5,18.2,16.8,15.8,12.5,11.1,4.4,3.5,-4.0,-5.0 \mathrm{ppm}$; IR (film): $\tilde{v}=2955$, 2928, 2856, 1738, 1618, 1461, 1376, 1248, 1142, 1117, 1091, 1075, 1061, 1031, 938, 920, 833, 775, $675 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%): 458$ (5), 283 (28), 185 (16), 184 (16), 183 (100), 174 (5), 169 (26), 163 (5), 159 (6), 157 (15), 153 (12), 146 (40), 145 (17), 137 (11), 131(29), 115 (7), 97 (6), 93 (8), 91 (8), 89 (16), 82 (8), 73 (29), 45 (39); HRMS (EI): m / z : calcd. for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{IO}_{5} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]$: 721.27557, found 721.27549.

Compound 30. All glassware used for the ring closing alkyne metathesis reaction was
 flame-dried under vacuum and backfilled with Argon after cooling to room-temperature (3 cycles). All solvents used were freshly distilled (toluene from $\mathrm{Na} / \mathrm{K}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2}), stored over $4 \AA \mathrm{MS}$ and degassed by 4 freeze-pump-thaw cycles prior to use. A stock solution of activated catalyst was prepared as follows: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($205 \mu \mathrm{~L}, 3.26 \mathrm{mmol}$) was added to a solution of complex 34 (80.0 mg , $0.128 \mathrm{mmol})^{8,9}$ in toluene $(6.4 \mathrm{~mL})$. The resulting brown solution was stirred for 30 min to give a 0.194 m stock solution of the active catalyst.
Diyne 29 ($150 \mathrm{mg}, 0.215 \mathrm{mmol}$) was azeotropically dried with toluene ($3 \times 2 \mathrm{~mL}$). It was then transferred as a toluene solution to a two-necked round-bottom flask equipped with a reflux condenser and septum. Additional toluene was added to reach a total volume of 150 mL . The solution was heated to $100^{\circ} \mathrm{C}$ and an aliquot of the activated catalyst solution ($0.33 \mathrm{~mL}, 0.065 \mathrm{mmol}, 0.30 \mathrm{eq}$.) was introduced via syringe. The reaction was stirred at $100^{\circ} \mathrm{C}$ for 7 h before a second aliquot of the catalyst solution $(0.11 \mathrm{~mL}$, $0.022 \mathrm{mmol}, 0.10 \mathrm{eq}$.) was added. Stirring was continued at $100^{\circ} \mathrm{C}$ for further 12 h . After reaching ambient temperature, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ to slowly form a brown precipitate which was filtered off through a short pad of SiO_{2}, eluting with $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$. The pale brown filtrate was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, $39: 1 \rightarrow 19: 1$) to provide a mixture of N-tert-butyl-3,5dimethylaniline and the desired product. The amine was removed at $60^{\circ} \mathrm{C}$ under high vacuum overnight to leave the desired compound as a pale yellow oil ($99.2 \mathrm{mg}, 72 \%$). $[\alpha]_{20}^{D}=+83.0(\mathrm{c}=0.57, n$-hexane $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.34(\mathrm{~d}, 1 \mathrm{H}, J=$ $1.0 \mathrm{~Hz}), 5.63(\mathrm{dd}, 1 \mathrm{H}, J=10.6,9.6 \mathrm{~Hz}), 5.54(\mathrm{dd}, 1 \mathrm{H}, J=10.6,1.6 \mathrm{~Hz}), 5.36-5.30(\mathrm{~m}$, $1 \mathrm{H}), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}) ; 4.73(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.37(\mathrm{dd}$, $1 \mathrm{H}, J=9.1,1.1 \mathrm{~Hz}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dddd}, 1 \mathrm{H}, J=16.5,9.7$, $6.9,6.8 \mathrm{~Hz}$), $2.98-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.07$ (dddd, $1 \mathrm{H}, J=15.5,7.2,7.2,0.6 \mathrm{~Hz}), 1.83(\mathrm{~d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.11(\mathrm{~s}, 3 \mathrm{H})$,

[^5]$0.07 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,144.6,144.3,137.4,126.4$, $110.3,98.9,96.9,87.0,82.5,82.0,80.6,63.9,56.0,46.0,42.0,37.7,34.6,25.8,22.5$, $19.5,18.2,17.4,16.6,16.3,12.1,-4.5,-5.1 \mathrm{ppm}$; IR (film): $\tilde{v}=2957,2929,2856,1732$, 1617, 1462, 1377, 1361, 1257, 1143, 1058, 1031, 990, 932, 858, 835, 801, 775, 753, 672 cm^{-1}; MS (pos. ESI) $m / z(\%): 683(\mathrm{M}+\mathrm{K}, 30), 667(\mathrm{M}+\mathrm{Na}, 100)$; HRMS (EI): m/z: calcd. for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{IO}_{5} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]: 667.22862$, found 667.22903.
(S)-4-Benzyl-3-($(2 R, 3 R)$-3-hydroxy-2-methylpentanoyl)oxazolidin-2-one. ${ }^{10} \quad i \mathrm{Pr}_{2} \mathrm{NEt}$
 ($3.35 \mathrm{~mL}, 19.7 \mathrm{mmol}$) was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of ent $\mathbf{- 1 2}$ $(4.00 \mathrm{~g}, \quad 17.1 \mathrm{mmol})$ and freshly destilled $(n \mathrm{Bu})_{2}$ BOTf $(7.38 \mathrm{~mL}$, $34.2 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. After stirring for 45 min at $0^{\circ} \mathrm{C}$, the yellow suspension was cooled to $-78^{\circ} \mathrm{C}$ before a precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of freshly destilled propionaldehyde ($1.62 \mathrm{~mL}, 22.2 \mathrm{~mL}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was slowly introduced. After an additional 30 min , the reaction was quenched by addition of solid tartaric acid (13 g) and the mixture stirred at ambient temperature for 2 h . The reaction was partitioned between ether and $\mathrm{H}_{2} \mathrm{O}$, and the combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 40 \mathrm{~mL})$. A mixture of $\mathrm{MeOH} / 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(3: 1,50 \mathrm{~mL})$ was added under vigorous stirring at $0^{\circ} \mathrm{C}$ and the resulting mixture stirred for 1 h at room temperature before it was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined extracts were washed with NaHCO_{3} and brine (30 mL each), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash chromatography (hexanes/EtOAc, 3:1) to give the title compound as an off-white solid ($3.69 \mathrm{~g}, 74 \%, 11: 1 \mathrm{dr}$), along with additional 350 mg of mixed fractions. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-$ 7.25 (m, 1H), $7.23-7.19$ (m, 2H), 4.67 (ddd, $1 \mathrm{H}, J=13.0,6.8,3.2 \mathrm{~Hz}$), $4.21-4.12$ (m, 2 H), 3.90 (dq, 1H, $J=6.9,6.9 \mathrm{~Hz}$), 3.65 (dddd, $1 \mathrm{H}, J=8.3,8.3,7.4,3.5 \mathrm{~Hz}$), $3.31(\mathrm{dd}$, $1 \mathrm{H}, J=13.5,3.4 \mathrm{~Hz}), 2.76(\mathrm{dd}, 1 \mathrm{H}, J=13.4,9.6 \mathrm{~Hz}), 2.56-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.54-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.00 \mathrm{ppm}(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=176.9,153.6,135.2,129.4,129.0,127.3,76.0,66.0,55.6$, $42.9,37.9,27.8,14.6,9.8 \mathrm{ppm}$; IR (film): $\tilde{v}=3516,2967,2936,2879,1775,1695,1455$, 1385, 1351, 1291, 1209, 1111, 1051, 1015, 969, 762, 749, $702 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 291 (10), 244 (28), 233 (18), 178 (32), 158 (15), 142 (13), 134 (24), 133 (16), 118 (14),

[^6]117 (51), 116 (25), 115 (42), 97 (27), 96 (11), 92 (39), 91 (100), 86 (87), 85 (25), 77 (11), 70 (13), 69 (37), 65 (29), 59 (57), 58 (19), 57 (89), 56 (24), 45 (27), 43 (22), 42 (33), 41 (38), 39 (18), 31 (42), 30 (15), 29 (73), 28 (22), 27 (33); HRMS (EI): $m / z:$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 314.13628$, found 314.13570.
(2R,3R)-1-((S)-4-Benzyl-2-oxooxazolidin-3-yl)-2-methyl-1-oxopentan-3-yl acetate

(21). $\mathrm{Et}_{3} \mathrm{~N}(2.20 \mathrm{~mL}, 15.8 \mathrm{mmol})$ and freshly distilled acetic anhydride $(1.40 \mathrm{~mL}, 14.6 \mathrm{mmol})$ were successively added to a solution of the above alcohol ($3.55 \mathrm{~g}, 12.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and DMAP ($296 \mathrm{mg}, 2.40 \mathrm{mmol}$) was introduced. After 30 min , the ice bath was removed and stirring continued for 90 min before the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$, the combined organic layers were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (hexanes/EtOAc, 4:1 $\rightarrow 3: 1$) to give the title compound as a single diastereomer in the form of a white solid ($3.26 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.29$ (m , $2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{ddd}, 1 \mathrm{H}, J=8.1,8.0,3.6 \mathrm{~Hz}), 4.70-$ $4.63(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{dd}, 1 \mathrm{H}, J=13.1,3.3 \mathrm{~Hz}), 2.68(\mathrm{dd}, 1 \mathrm{H}, J=13.3$, $9.7 \mathrm{~Hz}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $0.92 \mathrm{ppm}(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.6,170.1,153.0$, 135.1, 129.4, 129.0, 127.4, 75.7, 65.8, 55.3, 40.8, 37.8, 24.1, 21.0, 14.0, 8.8 ppm ; IR (film): $\tilde{v}=3029,2978,2944,2883,1782,1737,1699,1491,1455,1378,1349,1291$, 1208, 1111, 1098, 1049, 1016, 962, 884, 840, 762, 741, 726, $698 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%)$: 273 (14), 244 (27), 178 (11), 157 (14), 117 (19), 97 (86), 96 (18), 91 (32), 69 (23), 57 (10), 43 (100), 41 (16), 29 (13); HRMS (EI): $m / z:$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]$: 356.14684, found 356.14686.
(5R,6R)-6-Ethyl-5-methyldihydro-2H-pyran-2,4(3H)-dione (22). A pre-cooled solution $\left(-78^{\circ} \mathrm{C}\right)$ of LiHMDS ($4.5 \mathrm{~g}, 27.0 \mathrm{mmol}$) in THF (50 mL) was
 added via canula to a solution of acetate $21(3.00 \mathrm{~g}, 9.01 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 1 h , the mixture was poured into sat. $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1: 1,250 \mathrm{~mL})$ and diluted with EtOAc (150 mL). The organic phase containing the chiral auxiliary was separated, which could be
recovered by flash chromatography (hexanes/EtOAc, 1:1). The aqueous phase was acidified with $\mathrm{HCl}(1 \mathrm{~m})$ to pH 2 and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography (hexanes/EtOAc, $3: 1 \rightarrow 1: 1$) to yield the desired β ketoester as a white solid (1.17 g, 83\%). $[\alpha]_{20}^{D}=-14.4\left(\mathrm{c}=0.55, \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.25(\mathrm{ddd}, 1 \mathrm{H}, J=10.5,7.6,3.0 \mathrm{~Hz}), 3.53(\mathrm{~d}, 1 \mathrm{H}, J=19.1 \mathrm{~Hz}), 3.41$ $(\mathrm{d}, 1 \mathrm{H}, J=19.2 \mathrm{~Hz}), 2.40(\mathrm{dq}, 1 \mathrm{H}, J=10.4,7.1 \mathrm{~Hz}), 1.93(\mathrm{tdd}, 1 \mathrm{H}, J=14.8,7.3,3.0 \mathrm{~Hz})$, 1.69 (qdd, $1 \mathrm{H}, J=14.7,7.4,7.3 \mathrm{~Hz}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.08 \mathrm{ppm}(\mathrm{t}, 3 \mathrm{H}, J=$ 7.3 Hz) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.7,167.2,81.2,46.3,45.8,25.4,10.7,8.5$ ppm; IR (neat): $\tilde{v}=3205,2969,2928,2763,2346,1652,1587,1450,1395,1376,1323$, $1275,1260,1220,1152,1127,1084,1055,1039,991,964,903,872,850,823,750,697$ cm^{-1}; MS (EI) $\mathrm{m} / \mathrm{z}(\%): 156$ (12), 127 (20), 98 (70), 97 (14), 85 (58), 70 (29), 69 (16), 57 (35), 56 (100), 55 (34), 43 (12), 42 (41), 31 (18), 39 (13), 29 (35), 28 (25), 27 (20); HRMS (EI): $m / z:$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}[M]: 156.07865$, found 156.07866.
(4R,5R,6R)-4-Allyl-6-ethyl-4-hydroxy-5-methyltetrahydro-2H-pyran-2-one (ent-25).
 To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of β-ketoester $22(84.6 \mathrm{mg}, 0.542 \mathrm{mmol})$ in THF (3.5 mL) was slowly added a precooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the freshly prepared Soderquist reagent $(1 R)-\mathbf{2 4}(150 \mathrm{mg}, 0.596 \mathrm{mmol})^{11}$ in THF $(2 \mathrm{~mL})$. After stirring at $0^{\circ} \mathrm{C}$ for 4 h , the mixture was diluted with hexanes (15 mL) and N, N-dimethylethanolamine ${ }^{12}(53.0 \mathrm{mg}, 0.596 \mathrm{mmol})$ was introduced. The resulting cloudy solution was stirred overnight under reflux. For work up, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (35 mL) was added at ambient temperature and the resulting mixture was extracted with EtOAc (4 x 15 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography (silica gel 60 (15 x $40 \mu \mathrm{~m}$), hexanes/EtOAc, $2.5: 1 \rightarrow 2: 1$) to yield the desired isomer ($77.3 \mathrm{mg}, 72 \%$) as white needles. A crystal suitable for X-ray analysis was obtained by slowly cooling a concentrated solution of the compound in hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(92: 8)$ to $-40^{\circ} \mathrm{C} .[\alpha]_{20}^{D}=+1.8$ $\left(\mathrm{c}=0.56, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=5.70(\mathrm{dddd}, 1 \mathrm{H}, J=17.1,10.1,7.5$,

[^7]$7.1 \mathrm{~Hz}), 5.02$ (dddd, $1 \mathrm{H}, J=10.1,1.9,0.9,0.8 \mathrm{~Hz}), 4.95(\mathrm{ddd}, 1 \mathrm{H}, J=17.1,3.3,1.4 \mathrm{~Hz})$, 3.44 (ddd, 1H, $J=10.2,7.4,2.9 \mathrm{~Hz}), 2.57(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}), 2.18(\mathrm{dd}, 1 \mathrm{H}, J=16.5$, 1.1 Hz), 1.98 (ddq, $1 \mathrm{H}, J=13.9,6.8,1.1 \mathrm{~Hz}$), $1.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.55$ $(\mathrm{dq}, 1 \mathrm{H}, J=10.1,6.9 \mathrm{~Hz}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}), 0.57 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=168.4,132.2$, $120.2,82.5,71.0,43.1,42.9,38.9,27.0,10.7,9.1 \mathrm{ppm}$; IR (neat): $\tilde{v}=3434,3078,2974$, 2939, 1721, 1640, 1463, 1377, 1247, 1163, 1085, 1042, 1006, 919, 838, $796 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 157 (25), 127 (9), 111 (9), 99 (45), 98 (11), 95 (37), 71 (100), 67 (14), 57 (37), 55 (35), 53 (29), 43 (60), 42 (43), 41 (96), 40 (13), 39 (44), 29 (73), 27 (42); HRMS (EI): $m / z:$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]$: 221.11481, found 221.11457.
(4S,5R,6R)-4-Allyl-6-ethyl-4-hydroxy-5-methyltetrahydro-2H-pyran-2-one (ent-23).

Prepared analogously from β-ketoester $22(40.8 \mathrm{mg}, 0.262 \mathrm{mmol})$ and (1S)-24 as a white solid ($45.6 .3 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR analysis of the crude product before flash chromatography indicated a diastereomeric ratio of 7.5:1 in favor of 23. A crystal suitable for X-ray analysis was obtained by slowly cooling a concentrated solution of the compound in hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(92: 8)$ to $-40^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=5.45$ (dddd, $1 \mathrm{H}, J=17.1,9.9,7.3,7.3 \mathrm{~Hz}$), 4.94 (dddd, $1 \mathrm{H}, J$ $=10.1,1.7,0.7,0.7 \mathrm{~Hz}), 4.88(\mathrm{ddd}, 1 \mathrm{H}, J=17.0,3.2,1.3 \mathrm{~Hz}), 4.21(\mathrm{ddd}, 1 \mathrm{H}, J=10.5$, $7.7,2.8 \mathrm{~Hz}$), $2.48(\mathrm{~d}, 1 \mathrm{H}, J=17.3 \mathrm{~Hz}), 2.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.21(\mathrm{~d}, 1 \mathrm{H}, J=17.3 \mathrm{~Hz}), 2.00$ $(\mathrm{dd}, 1 \mathrm{H}, J=13.7,7.3 \mathrm{~Hz}), 1.90(\mathrm{dd}, 1 \mathrm{H}, J=13.7,7.6 \mathrm{~Hz}), 1.59-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.19-$ $1.29(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.63 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.8,131.6,120.6,82.3,71.1,44.4,42.3,38.9,25.8,9.6,8.6 \mathrm{ppm}$; IR (film): $\tilde{v}=3429,2978,2935,1710,1460,1442,1385,1326,1261,1107,1008,987,919$, $702 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 157 (26), 127 (9), 111 (9), 99 (45), 98 (12), 95 (37), 71 (100), 67 (16), 57 (37), 55 (30), 53 (29), 43 (60), 42 (43), 41 (96), 40 (13), 39 (44), 29 (73), 27 (43); HRMS (EI): m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 221.11481$, found 221.11461.

MIDA ester ent-28. A flame-dried Schlenk flask was charged with the ruthenium
 carbene complex $27(25.8 \mathrm{mg}, 30.4 \mu \mathrm{~mol})$ and the vinylboronic acid derivative 26 ($116.6 \mathrm{mg}, 0.637 \mathrm{mmol}$), evacuated and backfilled with Ar (3 cycles). A solution of the homoallylic alcohol ent-25 (120.4 mg, 0.607 mmol$)$ in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was then introduced and the flask fitted with a reflux condenser and an Argon bubbler, allowing the generated ethane to evaporate. The reaction mixture was heated to $40^{\circ} \mathrm{C}$ for 16 h . After cooling to room-temperature, DMSO $(300 \mu \mathrm{~L})$ was added and the mixture stirred for 8 h . It was then concentrated under reduced pressure and the resulting residue purified by flash chromatography (tert-butyl methyl ether/MeCN, 3:1) to yield the title compound as a white solid ($174 \mathrm{mg}, 81 \%$) $[\alpha]_{\mathrm{D}}{ }^{20}=+4.4(\mathrm{c}=0.88$, MeCN); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}$): $\delta=6.05$ (ddd, $1 \mathrm{H}, J=17.7,8.1,5.6 \mathrm{~Hz}$), $5.44(\mathrm{~d}, 1 \mathrm{H}, J=17.7 \mathrm{~Hz}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 4.17(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $3.99-3.90(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 2.33(\mathrm{dd}, 1 \mathrm{H}, J=14.0$, $5.4 \mathrm{~Hz}), 2.25(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}), 2.08(\mathrm{dd}, 1 \mathrm{H}, J=13.9,8.4 \mathrm{~Hz}), 1.81-1.69(\mathrm{~m}, 2 \mathrm{H})$, $1.57-1.47(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.92 \mathrm{ppm}(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, [D $\left.\mathrm{D}_{6}\right]$-DMSO): $\delta=170.3,169.2,169.1,139.3,130.4$ (br), 82.8, 70.7, 61.3, 61.2, 46.7, 43.0, 42.4, 41.0, 26.2, 11.0, 9.0 ppm ; IR (film): $\tilde{v}=3504,2953,1745,1716$, $1639,1464,1375,1286,1247,1223,1118,1029,1001,987,958,893,859,841,779,723$ cm^{-1}; MS (ESI) $\mathrm{m} / \mathrm{z} 376.2\left[M^{+}+\mathrm{Na}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BNO}_{7} \mathrm{Na}$ $\left[M^{+}+\mathrm{Na}\right]: 376.15518$, found 376.15433 .

Compound 31a. A solution of compound $30(54 \mathrm{mg}, 0.0838 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3: 1$,
 0.84 mL , degassed by three freeze-pumpthaw cycles) was added to a degassed solution of MIDA ester (+)-ent-28 $(35.5 \mathrm{mg}, 0.0807 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(19.4 \mathrm{mg}, 0.0168 \mathrm{mmol})$. Thallium ethoxide $(35.6 \mu \mathrm{~L}, 0.503 \mathrm{mmol})$ was added via syringe to the resulting yellow mixture, which was stirred for 2.5 h at room temperature before being diluted with tert-butyl methyl ether (5 mL) and transferred to a roundbottom flask fitted with a stirbar. Aqueous $\mathrm{HCl}(0.5 \mathrm{~m}, 6 \mathrm{~mL})$ was introduced ($\mathrm{pH} \sim 2$) and the mixture stirred for $2.5 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the aqueous phase was extracted with tert-butyl methyl ether ($4 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $2.5: 1 \rightarrow 2: 1$) to give the title compound as a white solid ($30.3 \mathrm{mg}, 56 \%$) . $[\alpha]_{20}^{D}=+206.5\left(\mathrm{c}=0.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, CDCl_{3}): see Table S-1; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table S-1; IR (film): $\tilde{v}=3465$,

2960, 2930, 2857, 1727, 1463, 1389, 1332, 1250, 1144, 1060, 1035, 1005, 985, 918, 859, 837, 776, 755, 733, $669 \mathrm{~cm}^{-1}$; MS (pos. ESI) $\mathrm{m} / \mathrm{z}(\%): 737.5$ (M+Na, 100); HRMS (EI): $m / z:$ calcd. for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{8} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]$: 737.441191, found 737.44227.

Table S-1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data of product 31a; numbering scheme as shown in the Insert.

Nr	${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$					${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	
	δ (ppm)	Integral	Splitting	cosy	$J(\mathrm{~Hz})$	δ (ppm)	HMBC
1	-	-	-	-	-	172,2	2a, 2b, 15
2a	2,41	1H	dd	2b, 3a, 3b	13.9, 6.9		
2 b	2.33-2.25	1H	m	2a, 3a, 3b	-	34,7	3, 4
3a	2.23-2.31	1H	m	2a, 2b, 3b	-	22.5	2.4
3b	2.19-2.23	1H	m	2a, 2b, 3a	-	22,5	2, 4
4	5,37	1H	dd	3a, 3b	6.6, 3.9	126,7	3a, 3b, 26
5	-	-	-	-	-	137,2	3b, 26, 27
6	2,96	1H	br s	27	-	46,1	7, 26
7	3,42	1H	brd	-	7,8	87,2	27, 28a, 28b, 30
8	2.05-2.13	1H	m	9,30	-	41,9	9,30
9	4,36	1H	dd	8,12	9.3, 1.1	63,9	8,30
10	-	-	-	-	-	96,6	8, 9, 12
11	-	-	-	-	-	82,2	9, 12, 13
12	5,53	1H	dd	9, 13	10.6, 1.5	109,9	4, 9, 13, 14
13	5,66	1 H	dd	12, 14	10.5, 10.4	145,1	9, 12, 14, 15, 35
14	3,20	1H	ddq	13, 15, 35	10.1, 10.1, 6.8	37,6	12, 13, 15
15	5,09	1H	d	14	9,7	82,6	14, 17, 35, 36
16	-		-	-	-	134,3	14, 15, 17, 18, 19, 36
17	6,04	1H	dd	18, 36	10.8, 0.8	128,8	15, 18, 19, 36
18	6,35	1H	dd	17, 19	15.1, 10.8	131,7	17, 20a, 20b, 36
19	5,70	1 H	ddd	18, 20a, 20b	15.3, 7.7, 7.7	127,1	17, 20a, 20b, 36
20a	2.33-2.38	1H	m	2a, 2b, 3b	-		
20b	2.16-2.22	1H	m	2a, 2b, 3a	-	37,8	18, 19, 20a,b, 22
21	-	-	-	-	-	71,5	19, 20, 38, 22
22	1,92	1H	dq	24, 38	10.3, 6.9	42,5	23, 37, 38a
23	3,93	1H	ddd	24, 22	10.2, 7.3, 3.0	83,5	22, 24b, 25, 37
24a	1,83	1 H	ddq	23, 25	14.7, 7.3, 3.0		
24b	1,61	1H	ddq	23, 25	14.6, 7.3, 7.3	26,8	23, 24, 25
25	1,01	3 H	t	24	7,1	8,9	23, 24
26	1,46	3 H	s	4	-	12,0	4
27	0.98-1.05	3H	m	6	-	17,4	-
28a	4,73	1H	d	28 b	6,9		2
28b	4,62	1 H	d	28a	6,9	99,0	29
29	3,39	3H	s	-	-	56,0	28a, 28b

30	1,08	$3 H$	d	8	7,1	16,8	8
31	0,11	3 H	s	-	-	$-4,5$	32
32	0,07	3 H	s	-	-	$-5,1$	31
33	-	-	-	-	-	18,2	31,32
34	0,89	9 H	s	-	-	25,8	-
35	0,82	3 H	d	14	6,8	16,6	$13,14,15$
36	1,76	3 H	d	17	0,8	12,1	15,17
37	1,02	3 H	d	22	6,9	11,1	$22,23,38 \mathrm{a}$
38 a	2,78	1 H	d	38 b	16,8	42,8	22,38
38 b	2,37	1 H	d	38 a	16,8	40,	$38 \mathrm{a}, 38 \mathrm{~b}$
39	-	-	-	-	-	170,1	-
OH	1,95	1 H	br s	-	-	-	

Compound 31. This diastereomer was obtained analogously in 55\% isolated yield using MIDA ester $(-)-28[\alpha]_{\mathrm{D}}{ }^{20}=+117.3\left(\mathrm{c}=0.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $6.31(\mathrm{dd}, 1 \mathrm{H}, J=15.0,10.9 \mathrm{~Hz}), 6.01(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.70(\mathrm{ddd}, 1 \mathrm{H}, J=15.0,7.5$, $7.5 \mathrm{~Hz}), 5.65(\mathrm{dd}, 1 \mathrm{H}, J=10.3,10.2 \mathrm{~Hz}), 5.52(\mathrm{dd}, 1 \mathrm{H}, J=10.8,0.9 \mathrm{~Hz}), 5.37-5.32(\mathrm{~m}$, $1 \mathrm{H}), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.35(\mathrm{~d}$, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}$), 3.92 (ddd, $1 \mathrm{H}, J=10.0,7.3,2.9 \mathrm{~Hz}$), $3.41(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.38$ (s, 3H), $3.24-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.77(\mathrm{~d}, 1 \mathrm{H}, J=16.7 \mathrm{~Hz}), 2.45-2.37$ (m, 2H), $2.35(\mathrm{~d}, 1 \mathrm{H}, J=16.7 \mathrm{~Hz}), 2.33-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.08$ (ddd, $1 \mathrm{H}, J=15.4,7.6,7.5 \mathrm{~Hz}), 1.90(\mathrm{ddd}, 1 \mathrm{H}, J=16.8,6.9,6.9 \mathrm{~Hz}), 1.83(\mathrm{ddq}, 1 \mathrm{H}, J=14.7$, $7.3,2.8 \mathrm{~Hz}$), 1.73 (s, 3H), $1.60(\mathrm{ddq}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}, 7.3,7.3 \mathrm{~Hz}$), 1.45 (s, 3H), 1.06 (d, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.02-0.97(\mathrm{~m}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.09(\mathrm{~s}, 3 \mathrm{H})$, $0.06 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,170.2,145.1,137.0,134.0$, $131.4,128.9,127.4,126.7,109.8,98.9,96.5,87.2,83.6,82.5,82.2,71.5,63.9,56.0,46.1$, $42.7,42.6,41.8,37.8,37.6,34.6,26.8,25.7,22.4,18.1,17.4,16.8,16.5,12.1,11.9,11.2$, 8.9, -4.5, -5.2; IR (film): $\tilde{v}=3448,2961,2930,2857,1724,1462,1377,1248,1144$, 1058, 1032, 1004, 983, 919, 858, 835, 750, $667 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 714 (5), 696 (4), 657 (4), 425 (5), 381 (13), 357 (8), 325 (7), 299 (9), 267 (12), 249 (27), 222 (72), 173 (11), 171 (14), 169 (68), 159 (11), 157 (16), 145 (13), 143 (11), 137 (18), 133 (18), 119 (17), 107 (16), 95 (25), 89 (36), 81 (20), 75 (41), 73 (100), 72 (24); HRMS (EI): m/z: calcd. for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{8} \mathrm{SiNa}\left[M^{+}+\mathrm{Na}\right]$: 737.441192, found 737.44302.

Propargylic alcohol S36a. TBAF (1 M in THF, $92.6 \mu \mathrm{~L}, 0.093 \mathrm{mmol}$) was slowly added
 to a suspension of silyl ether 31a ($26.5 \mathrm{mg}, 0.037 \mathrm{mmol}$) and activated $4 \AA$ molecular sieves in THF (0.5 mL) at $0^{\circ} \mathrm{C}$. After 40 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O} /$ brine $(2: 1,4 \mathrm{~mL}$) and diluted with $\mathrm{EtOAc}(3 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 4 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was quickly purified by flash chromatography (Florisil, hexanes/EtOAc, 2:1 \rightarrow 1:2), keeping the contact time with the Florisil as short as possible. The white solid ($17.2 \mathrm{mg}, 76 \%$) thus obtained was immediately used in the next step as it decomposes upon storage in a freezer. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=6.31$ $(\mathrm{dd}, 1 \mathrm{H}, J=15.0,10.9 \mathrm{~Hz}), 6.13(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}), 5.58(\mathrm{dt}, 1 \mathrm{H}, J=15.0,7.5 \mathrm{~Hz})$, $5.53-5.46(\mathrm{~m}, 3 \mathrm{H}), 5.41-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.44$ (ddd, 1H, $J=10.2,7.5,2.9 \mathrm{~Hz}$), $3.41(\mathrm{dd}, 1 \mathrm{H}, J=8.7,2.7 \mathrm{~Hz}), 3.37-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.10$ $(\mathrm{s}, 3 \mathrm{H}), 2.95\left(\mathrm{~d}, 1 \mathrm{H}, J=2.9^{\circ} \mathrm{Hz}\right), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 2.29-$ $2.15(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 2.09-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.84$ (dd, $1 \mathrm{H}, J=14.1,7.6 \mathrm{~Hz}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, 3 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}), 1.24(\mathrm{ddq}, 1 \mathrm{H}, J=14.5,7.3,7.2 \mathrm{~Hz}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.58 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$; IR (film): $\tilde{v}=3457,2970$, 2934, 1728, 1455, 1377, 1246, 1189, 1149, 1091, 1022, 987, 843, $755 \mathrm{~cm}^{-1}$; HRMS (ESIpos): m / z : calcd. for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 623.35544$, found 623.35527.
Isomer S36. This diastereomer was obtained analogously in 85% yield. ${ }^{1}$ H NMR (400

$\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=6.36(\mathrm{dd}, 1 \mathrm{H}, J=14.9$, $10.8 \mathrm{~Hz}), 6.15(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 5.73$ (dt, $1 \mathrm{H}, J=15.0,7.5 \mathrm{~Hz}), 5.53-5.46(\mathrm{~m}$,

3 H), $5.41-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.08$ (br t, 1H, J
$=2.7 \mathrm{~Hz}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{ddd}, 1 \mathrm{H}, J=10.0,7.4,2.8 \mathrm{~Hz}), 3.42(\mathrm{dd}, 1 \mathrm{H}, J=8.6$, $2.5 \mathrm{~Hz}), 3.36-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz})$, $2.56(\mathrm{dq}, 1 \mathrm{H}, J=7.4,7.3 \mathrm{~Hz}), 2.30-2.15(\mathrm{~m}, 6 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{dd}, 1 \mathrm{H}, J=$ $14.3,7.7 \mathrm{~Hz}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{dd}, 1 \mathrm{H}, J=15.9,9.1,6.9,2.2 \mathrm{~Hz}), 1.50(\mathrm{ddq}, 1 \mathrm{H}, J=$ $14.6,7.2,3.1 \mathrm{~Hz}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.01(\mathrm{~d}$,
$3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.67 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=$ 6.8 Hz); IR (film): $\tilde{v}=3454,2972,2932,1727,1462,1379,1246,1193,1151,1090$, 1029, 1022, 986, 844, $759 \mathrm{~cm}^{-1}$; HRMS (ESIpos): m/z: calcd. for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]$: 623.35544, found 623.35513.

Bis-diene 32a. A solution of propargyl alcohol S36a ($14.0 \mathrm{mg}, 0.0241 \mathrm{mmol}$) in THF
 $(0.3 \mathrm{~mL})$ was added to a suspension of freshly prepared $\mathrm{Zn}(\mathrm{Cu} / \mathrm{Ag})^{13}(1.3 \mathrm{~g})$ in degassed $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,1.1 \mathrm{~mL})$ and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 18 h . After cooling to room-temperature, the mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite, which was carefully rinsed with EtOAc $(140 \mathrm{~mL})$ and $\mathrm{EtOH}(15 \mathrm{~mL})$. The combined filtrates were concentrated under reduced pressure to ca. $1 / 10$ of the original volume and then washed with brine $/ \mathrm{H}_{2} \mathrm{O}(1: 1,15 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography (Florisil, hexanes/EtOAc, 2:1 \rightarrow 1:1) to give the title compound as a white solid ($11.7 \mathrm{mg}, 81 \%$) . $[\alpha]_{20}^{D}=-40.1\left(\mathrm{c}=0.76, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.45(\mathrm{dd}, 1 \mathrm{H}, J=11.3,11.2 \mathrm{~Hz}), 6.40(\mathrm{dd}, 1 \mathrm{H}, J=15.0,10.9 \mathrm{~Hz}), 6.29(\mathrm{dd}$, $1 \mathrm{H}, J=11.3,11.3 \mathrm{~Hz}), 6.10(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.76(\mathrm{ddd}, 1 \mathrm{H}, J=15.1,7.6,7.6 \mathrm{~Hz})$, $5.57(\mathrm{dd}, 1 \mathrm{H}, J=10.6,10.3 \mathrm{~Hz}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=10.7,10.5 \mathrm{~Hz}), 5.15-5.10(\mathrm{~m}, 1 \mathrm{H})$, $5.09(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}$, $J=6.3 \mathrm{~Hz}), 3.91(\mathrm{ddd}, 1 \mathrm{H}, J=10.0,7.3,2.9 \mathrm{~Hz}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz})$, $3.04-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.73(\mathrm{~d}, 1 \mathrm{H}, J=16.6 \mathrm{~Hz}), 2.62-2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~d}, 1 \mathrm{H}, J=14.2,7.9 \mathrm{~Hz}), 2.36(\mathrm{~d}, 1 \mathrm{H}, J=16.6 \mathrm{~Hz}), 2.35-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.27-$ $2.18(\mathrm{~m}, 3 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{ddq}, 1 \mathrm{H}, \mathrm{J}=$ $7.4,7.4,2.8 \mathrm{~Hz}$), $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{ddq}, 1 \mathrm{H}, J=14.4,7.2,7.1 \mathrm{~Hz}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}$, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.07(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.01(\mathrm{t}, 3 \mathrm{H}, J=$ $7.4 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=0.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4,170.2,137.1$,

[^8]136.4, 134.1, 132.4, 131.6, 129.7, 128.3, 126.4, 124.5, 124.3, 100.0, 89.4, 83.9, 82.9, $72.1,65.0,56.6,48.1,43.3,43.0,39.1,38.7,35.3,33.8,27.2,26.4,22.4,16.7,16.5,12.1$, 11.6, 11.4, 9.2; IR (film): $\tilde{v}=3457,2966,2934,1729,1455,1367,1244,1147,1089$, 1019, 985, 949, 918, 863, $736 \mathrm{~cm}^{-1}$; HRMS (ESIpos): m/z: calcd. for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{Na}$ $\left[M^{+}+\mathrm{Na}\right]: 625.37109$, found 625.37162 .

Compound 32. This diastereomer was obtained analogously in 89% yield. $[\alpha]_{20}^{D}=-72.0$ ($\mathrm{c}=0.66, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): see Table S-2; ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): see Table S-2; IR (film): $\tilde{v}=3447,2966,2932,1729,1456,1415,1368,1243$, 1206, 1147, 1089, 1020, 985, 918, 863, 783, 748, 736, $700 \mathrm{~cm}^{-1}$; HRMS (ESIpos): m/z: calcd. for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 625.37109$, found 625.37092.

Allylic carbamate 33a. A solution of trichloroacetyl isocyanate $\left(1.0 \mathrm{~m}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$,
 $16.4 \mu \mathrm{~L}, 0.0164 \mathrm{mmol}$) was added to a precooled solution $\left(-78^{\circ} \mathrm{C}\right)$ of the allylic alcohol 32a ($9.0 \mathrm{mg}, \quad 0.015 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , before being quenched with $\mathrm{MeOH}(0.1 \mathrm{~mL})$ at this temperature. After warming and concentration under reduced pressure, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and the solution soaked on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$. After 1.5 h , the alumina was loaded onto a short pad of Celite, which was eluted with $\mathrm{EtOAc} / \mathrm{EtOH}(9: 1,12 \mathrm{~mL})$. The solvent was evaporated and the residue purified by flash chromatography (Florisil, hexanes/EtOAc, 1:1 \rightarrow 1:2) to furnish the title compound as a white foam ($6.1 \mathrm{mg}, 63 \%$) $[\alpha]_{20}^{D}=-43.7\left(\mathrm{c}=0.31, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.69$ (dd, $1 \mathrm{H}, J=10.8,10.6 \mathrm{~Hz}$), $6.40(\mathrm{dd}, 1 \mathrm{H}, J=15.0$, $10.9 \mathrm{~Hz}), 6.32(\mathrm{dd}, 1 \mathrm{H}, J=10.8,10.6 \mathrm{~Hz}), 6.10(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 5.92(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.2 \mathrm{~Hz}), 5.76$ (ddd, 1H, $J=15.1,7.6,7.6 \mathrm{~Hz}), 5.50(\mathrm{dd}, 1 \mathrm{H}, J=5.50 \mathrm{~Hz}), 5.36-5.33(\mathrm{~m}$, $1 \mathrm{H}), 5.11-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=6.70 \mathrm{~Hz}), 4.58$ (d, $1 \mathrm{H}, J=6.72 \mathrm{~Hz}$), $4.56-4.44(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.90(\mathrm{ddd}, 1 \mathrm{H}, J=10.1,7.4,2.9 \mathrm{~Hz}), 3.38(\mathrm{~s}$, $3 \mathrm{H}), 3.30(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 3.03-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 2.54-2.46$ (br s, 1H), 2.40 (dd, 1H, $J=14.0,7.8 \mathrm{~Hz}), 2.36(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H})$, $2.26-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dq}, 1 \mathrm{H}, J=10.5$,
$7.1 \mathrm{~Hz}), 1.84(\mathrm{ddq}, 1 \mathrm{H}, J=7.4,7.3,3.1 \mathrm{~Hz}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{ddq}, 1 \mathrm{H}, J=14.7,7.4$, $7.3 \mathrm{~Hz}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.09(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 1.01(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.87 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=172.3,170.2,156.2,137.3,136.8,134.1,131.7,129.7,129.2,128.1,126.1$, 125.1, 124.9, 98.8, 85.9, 83.7, 82.7, 72.1, 67.3, 56.2, 48.2, 43.1, 42.9, 38.6, 38.6, 34.9, 33.8, 27.1, 22.3, 16.7, 16.7, 13.7, 12.0, 11.6, 11.3, 9.2 ppm ; IR (film): $\tilde{v}=3441,3368$, 2969, 2931,1729, 1603, 1376, 1208, 1147, 1059, 1035, 917, $747 \mathrm{~cm}^{-1}$; MS (ESI) $\mathrm{m} / \mathrm{z}(\%)$: 684.4 (100); HRMS (ESIpos): $m / z:$ calcd. for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{NO}_{9} \mathrm{~K}\left[M^{+}+\mathrm{K}\right]: 684.35084$, found 625.35135.

Compound 33. This diastereomer was obtained analogously in 84% yield. $[\alpha]_{20}^{D}=-66.4$ ($\mathrm{c}=0.94, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): see Table S-3; ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): see Table S-3; IR (film): $\tilde{v}=3452,3365,2965,2931,1723,1602,1455,1376$, 1312, 1259, 1209, 1146, 1092, 1058, 1033, 954, 916, 863, 801, 748, 710, $679 \mathrm{~cm}^{-1}$; HRMS (ESIpos): m / z : calcd. for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{NO}_{9} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]: 668.37800$, found 668.37740 .

Table S-2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data of the semi-reduced product 32; numbering scheme as shown in the Insert.

Nr	${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right)$					${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}$)	
	δ (ppm)	Integral	Splitting	cosy	$J(H z)$	δ (ppm)	HMBC
1	-	-	-	-	-	172.4	2, 15
2 a	2.31-2.36	1H	m	2b, 3a	-	33.7	1,3,5,26
2 b	1.91-1.96	1H	m	2a, 3b	-	33.7	1, 3, 5, 26
3	2.15-2.23	2 H	m	2a, 2b, 4	-	22.2	1, 2, 4, 26
4	5.09-5.14	1H	m	3a, 3b, 26	-	126.3	2, 3, 6, 26
5	-	-	-	-	-	137.01	3, 6, 7, 26, 27
6	2.54-2.63	1H	m	7, 27	-	47.9	4, 5, 7, 26, 27
7	3.35	1H	d	6	10.6	89.3	6, 9, 27, 28, 30
8	1.62-1.69	1H	m	30	-	38.9	7, 9, 10, 30
9	5.04	1 H	d	10	9.8	65.0	7, 8, 11, OH1, 30
10	5.57	1H	dd	9, 11	9.9, 10.8	132.2	8, 9, 12, OH1
11	6.29	1H	dd	10, 12	10.9, 11.4	124.3	9, 12, 13, 14
12	6.45	1H	dd	11, 13	10.7, 11.4	124.4	10, 13, 14, 31
13	5.28	1 H	dd	12, 14	10.4, 10.7	136.3	11, 14, 15, 31
14	2.98-3.03	1H	m	13, 15, 31	-	35.1	12, 13, 15, 31
15	5.09	1H	d	14	10.4	82.9	13, 14, 16, 17, 31, 32
16	-	-	-	-	-	133.8	14, 15, 17, 18
17	6.09	1H	d	18	10.9	129.7	15, 16, 18, 19, 32
18	6.38	1H	dd	17, 19	11.0, 15.0	131.4	17, 20, 32
19	5.77	1H	ddd	20a, 20b	7.5, 7.5, 15.0	128.5	17, 18, 20, 21
20a	2.41	1H	dd	19, 20b	14.0, 7.2	38.5	18, 19, 21, 22,34
20b	2.16-2.22	1H	m	19, 20a	-	38.5	18, 19, 21, 22, 34
21	-	-	-	-	-	72.0	19, 20a, 20b, 22, 34
22	1.88	1H	dq	23, 33	10.0, 6.9	43.2	20, 33, 34,
23	3.91	1 H	ddd	22, 24a, 24b	10.0, 7.4, 2.8	83.8	22, 24, 25
24a	1.83	1H	ddq	23, 24b, 25	7.3, 7.4, 3.0	27.1	23.25
24b	1.60	1 H	ddq	23, 24b, 25	7.3, 7.3, 7.4		23, 25
25	1.00	3 H	t	24a, 24b	7.3	9.2	24
26	1.43	3 H	s	4	-	11.3	4, 5, 6
27	1.09	3H	d	6	6.8	16.4	5, 7, 30
28a	4.72	1H	d	28 b	6.5		
28b	4.63	1H	d	28a	6.5	99.8	7, 29
29	3.40	3H	s	-	-	56.6	28
30	1.06	3H	d	8	7.3	12.0	5, 9
31	0.86	3H	d	14	6.7	16.6	13, 14, 15
32	1.79	3H	s	17	-	12.0	15, 17
33	1.01	3H	d	22	6.9	11.5	21, 22
34a	2.72	1H	d	34b	16.5	42.8	21, 35
34b	2.34	1H	d	34a	16.6		
35	-	-	-	-	-	170.3	34a, 34b
OH 1	2.91	1H	br s				
OH 2	2.17-2.26	1H	br s				

Table S-3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data of the allylic carbamate 33; numbering scheme as shown in the Insert.

Nr	${ }^{1} \mathrm{H}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right)$					${ }^{13} \mathrm{C}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right)$	
	δ (ppm)	Integral	Splitting	cosy	$J(H z)$	δ (ppm)	HMBC
1	-	-	-	-	-	172.3	2, 15
2 a	2.27-2.33	1H	m	2b, 3a	-		
2 b	1.93-2.02	1H	m	2a, 3b	-	33.8	1, 4, 5, 26
3	2.18-2.23	2 H	m	2a, 2b, 4	-	22.3	1
4	5.05-5.11	1H	m	3a, 3b, 26	-	126.1	6
5	-	-	-	-	-	137.3	3, 26, 27
6	2.45-2.55	1H	m	7, 27	-	48.2	6, 26, 27
7	3.30	1H	d	6	9.9	85.9	9, 27, 29
8	1.72-1.79	1H	br m	30	-	38.6	30
9	5.92	1H	brd	10	9.3	67.3	7, 11, 12, 30
10	5.50	1H	br dd	9, 11	9.3, 10.0	129.2	12
11	6.32	1H	br dd	10, 12	10.1, 11.1	125.1	9, 13, 15
12	6.68	1 H	br dd	11, 13	10.7, 11.0	124.9	10, 14
13	5.29-5.36	1H	m	12, 14	-	136.8	11, 14, 15, 32
14	2.95-3.03	1 H	m	13, 15, 32	-	34.9	12, 13, 15, 32
15	5.08	1H	d	14	10.3	82.7	13, 14, 16, 17, 32, 33
16	-	-	-	-	-	133.9	14, 15, 17, 18, 19, 33
17	6.10	1H	d	18	10.9	129.8	15, 16, 17, 18, 19, 33
18	6.39	1 H	dd	17, 19	10.9, 15.1	131.5	17, 20, 33
19	5.77	1H	ddd	18, 20a, 20b	7.6, 7.6, 15.1	128.3	17, 20, 21, 33
20a	2.41	1H	dd	19, 20b	14.0, 7.3	38.6	18, 19, 21, 22, 35
20b	2.19-2.22	1H	m	19, 20a	-		
21	-	-	-	-	-	72.1	19, 20, 22, 34, 35
22	1.89	1H	dq	23, 34	9.9, 6.8	43.1	20, 34, 35
23	3.91	1H	ddd	22, 24a, 24b	10.1, 7.4, 2.9	83.8	22, 24, 25, 34
24a	1.84	1H	ddq	23, 24b, 25	7.4, 7.3, 2.8	27.1	
24b	1.62	1H	ddq	23, 24b, 25	7.3, 7.3, 7.4	27.1	23, 25
25	1.00	3 H	t	24a, 24b	7.4	9.2	24
26	1.43	3 H	br s	-	-	11.3	2, 6, 7
27	1.08	3H	d	6	6.6	16.7	5, 6, 7
28a	4.70	1H	d	28b	6.7	98.8	29
28b	4.58	1H	d	28a	6.7	-	-
29	3.38	3 H	s	-	-	56.2	28
30	1.13	3H	d	8	7.1	13.7	8, 27
31	-	-	-	-	-	156.3	-
32	0.86	3H	d	14	6.6	16.6	13, 14, 15
33	1.79	3H	d	17	0.7	12.0	15, 16, 17, 19
34	1.01	3H	d	22	7.1	11.6	21, 22
35a	2.73	1H	d	34b	16.5		
35b	2.35	1H	dd	34a	16.6, 0.3	42.8	21, 36
36	-	-	-	-	-	170.3	$34 \mathrm{a}, 34 \mathrm{~b}$
NH2	4.51-4.66	2 H	br s	-	-	-	-
OH 1	1.66-1.69	1H	br s	-	-	-	-

Leiodermatolide (1). A solution of compound $33(9.0 \mathrm{mg}, 13.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
 $(1.6 \mathrm{~mL})$ was cooled to $-90^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{CO}_{2} / \mathrm{N}_{2}\right.$ cooling bath) before a solution of freshly prepared $\mathrm{Me}_{2} \mathrm{BBr}\left(0.5 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30.6 \mu \mathrm{~L}$, $15.3 \mu \mathrm{~mol})^{14}$ was carefully added via the cold wall of the flask. The mixture was
allowed to reach $-78^{\circ} \mathrm{C}$ and was stirred at this temperature for 1.5 h , when a second aliquot of $\mathrm{Me}_{2} \mathrm{BBr}(0.5 \mathrm{M}, 30.6 \mu \mathrm{~L}, 15.3 \mu \mathrm{~mol})$ was introduced. After additional 1.5 h , the mixture was transferred via canula into a vigorously stirred mixture of sat. $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O} /$ THF $(1: 1: 1,10 \mathrm{~mL})$ and the flask was rinsed with THF ($2 \times 0.7 \mathrm{~mL}$). After stirring for 10 min , the mixture was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$, the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by preparative thin layer chromatography (TLC Silica gel 60 F254 ($20 \times 20 \mathrm{~cm}$), hexanes/EtOAc, 1:2.5) to give the title compound as a white solid ($5.1 \mathrm{mg}, 61 \%$). $[\alpha]_{24}^{D}=-74.3(\mathrm{c}=0.41, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 4.8 \mathrm{mg}$ in $\left.0.3 \mathrm{~mL} \mathrm{CD} 2 \mathrm{Cl}_{2}\right): \delta=6.53(\mathrm{dd}, 1 \mathrm{H}, J=11.7,11.3 \mathrm{~Hz}), 6.39(\mathrm{dd}, 1 \mathrm{H}, J$ $=15.3,10.7 \mathrm{~Hz}), 6.37(\mathrm{dd}, 1 \mathrm{H}, J=11.3,11.2), 6.10(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}), 5.89(\mathrm{~d}, 1 \mathrm{H}, J=$ 10.1 Hz), 5.77 (ddd, $1 \mathrm{H}, J=15.1,7.6,7.6 \mathrm{~Hz}$), 5.53 (dd, $1 \mathrm{H}, J=10.4,10.4 \mathrm{~Hz}$), 5.35 (dd, $\left.1 \mathrm{H}, J=10.5,10.4^{\circ} \mathrm{Hz}\right), 5.09(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 4.84-4.63(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 3.91 (ddd, $1 \mathrm{H}, J=10.1,7.4,2.9 \mathrm{~Hz}$), 3.26 (br t, 1 H), 2.97 (ddq, $1 \mathrm{H}, J=10.1,10.1$, $6.7 \mathrm{~Hz}), 2.73(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}), 2.46(\mathrm{dq}, 1 \mathrm{H}, J=11.2,5.8 \mathrm{~Hz}), 2.42(\mathrm{dd}, 1 \mathrm{H}, J=14.0$, $7.3 \mathrm{~Hz}), 2.35(\mathrm{dd}, 1 \mathrm{H}, J=16.6,0.9 \mathrm{~Hz}), 2.31(\mathrm{ddd}, 1 \mathrm{H}, J=16.7,5.8,3.0 \mathrm{~Hz}), 2.21(\mathrm{dd}$, $1 \mathrm{H}, J=13.9,8.0 \mathrm{~Hz}), 2.27-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, 1 \mathrm{H}, J=$ $16.7,10.6,3.6 \mathrm{~Hz}), 1.89(\mathrm{dq}, 1 \mathrm{H}, J=10.3,7.0 \mathrm{~Hz}), 1.83(\mathrm{ddq}, 1 \mathrm{H}, J=7.4,7.3,3.1 \mathrm{~Hz})$, $1.79(\mathrm{~d}, 3 \mathrm{H}, J=0.9 \mathrm{~Hz}), 1.74(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.62(\mathrm{ddq}, 1 \mathrm{H}, J=14.7,7.4,7.3 \mathrm{~Hz})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.08(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=.6 .8 \mathrm{~Hz})$, $1.01(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.86 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 4.8\right.$ mg in 0.3 mL$): ~ \delta=172.2,170.3,157.4,137.6,137.2,133.8,131.5,129.8,128.5,128.4$, $126.2,125.6,124.1,83.8,82.5,78.2,72.1,67.6,48.5,43.1,42.8,39.3,38.6,35.0,33.7$, $27.1,22.2,16.6,16.5,12.5,12.0,11.6,11.3,9.2 \mathrm{ppm}$; IR (film): $\tilde{v}=3360,2963,2924$,

[^9]$1708,1605,1455,1375,1312,1246,1207,1148,1082,1056,1040,986,949,915,778$, $745 \mathrm{~cm}^{-1}$; MS (ESI) $m / z(\%): 624.4$ (100); HRMS (ESIpos): $m / z:$ calcd. for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{NO}_{8} \mathrm{Na}$ $\left[M^{+}+\mathrm{Na}\right]: 624.35069$, found 624.35132 .

Leiodermatolide-Isomer 2. Prepared analogously from compound 33a (3.6 mg ,
 $5.6 \mu \mathrm{~mol})$ as a white solid $(0.6 \mathrm{mg}) .[\alpha]_{24}^{D}=-$ $58(\mathrm{c}=0.09, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ see Table S5; ${ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ see Table S5; MS (ESI) m / z (\%): 624.4 (100); HRMS (ESIpos): m/z: calcd. for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{NO}_{8} \mathrm{Na}\left[M^{+}+\mathrm{Na}\right]$: 624.35069, found 624.35155 .

Table S-4: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data of Leiodermatolide (1); numbering scheme as shown in the Insert, data was obtained with 0.8 mg in $0.3 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Nr	${ }^{1} \mathrm{H}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right)$					${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right)$	
	δ (ppm)	Integral	Splitting	COSY	$J(\mathrm{~Hz})$	δ (ppm)	HMBC
1	--	--	--	--	--	172.2	2, 3, 15
2 a	2.31	1H	ddd	2b, 3	16.7, n.d.		
2 b	1.99	1 H	ddd	2a, 3	16.7, n.d.	33.7	3, 4, 26
3	2.20	2 H	m	2, 4, 26	--	22.2	2, 4, 5, 26
4	5.09	1 H	ddq	3, 26	$9.9,5.5,1.6$	125.6	2, 3, 5, 6, 26
5	--	--	--	--	--	137.2	3, 4, 6, 26, 27
6	2.46	1 H	dq	7, 27	10.5, 6.7	48.5	$4,7,25,26,27$
7	3.26	1 H	br t	OH, 6, 8	9.9	78.2	6, 8, 9, 28
8	1.74	1 H	qt	7, 27, 28	7.4, n.d.	39.3	7, 10, 28
9	5.89	1 H	d	10	10.0	67.6	7, 28, 11
10	5.53	1 H	ddt	9, 11	10.7, 10.0, 1.4	128.5	9, 11, 12, 13
11	6.38	1 H	ddt	10, 12	12.0, 10.9	126.2	9, 10, 12, 13
12	6.53	1 H	ddt	11, 13	11.8, 11.0, 1.0	124.4	10, 11, 13, 14
13	5.35	1 H	ddt	12, 14	$10.8,10.2,1.4$	137.6	11, 12, 14, 15, 29
14	2.98	1 H	tq	13, 15, 29	10.2, 6.7	35.0	12, 13, 15, 29, 30
15	5.07	1 H	d	14	10.3	82.5	12, 13, 14, 17, 29, 30
16	--	--	--	--	--	134.0	$14,15,17,18,30$
17	6.10	1 H	dq	18, 30	10.9, 1.4	129.7	$15,16,18,19,30$
18	6.40	1 H	ddt	17,19, 20	$15.1,10.9,1.3$	131.7	16, 17, 20, 30
19	5.76	1 H	dt	18, 20	15.0, 7.6	128.2	17, 20, 30
20a	2.41	1 H	dd	19, 20b	14.0, 7.5		
20b	2.22	1H	dd	19, 20a	13.8, 7.9	38.6	18, 19, 32
21						72.1	18, 19, 20, 22, 31, 32
22	1.89	1 H	dq	23, 31	10.5, 6.7	43.1	20, 21, 23, 24, 31, 32
23	3.91	1 H	ddd	22, 24	10.0, 7.6, 3.1	83.8	22, 24, 25, 31
24a	1.85	1H	ddq	23, 24b, 25	14.5, 7.4, 3.1		
24b	1.62	1H	dq	23, 24a, 25	14.6, 7.4	27.1	22, 23, 25
25	1.01	3 H	t	24	7.3	9.2	23, 24
26	1.42.	3H	s	3, 4	-	11.3	3, 4, 5, 6
27	1.12	3 H	d	6	6.7	16.5	5, 6
28	1.08	3 H	d	8	7.3	12.5	7, 8, 9
29	0.87	3 H	d	14	6.7	16.6	13, 14, 15
30	1.79	3 H	d	17	1.0	12.0	14, 15, 16, 17, 18, 19
31	1.02	3 H	d	22	6.8	11.6	21, 22, 23, 32
32a	2.72	1H	d	32b	16.4		
32b	2.35	1H	dd	32a	16.5, 1.0	42.8	21, 22, 31, 33
33	--	--	--	--	--	170.2	32
34	--	--	--	--	--	157.3	9
NH 2	4.66	2 H	br s	--	--	--	--
$\mathrm{C} 7-\mathrm{OH}$	2.16	1H	d	7	7.9	--	--
$\mathrm{C} 21-\mathrm{OH}$	1.91	1H	s	--	--	--	--

				Table S-5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data of Leiodermatolideisomer 2; numbering scheme as shown in the Insert, data was obtained with 0.6 mg in 0.3 mL $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.			
	${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right)$					${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right)$	
Nr	δ (ppm)	Integral	Splitting	COSY	$J(H z)$	δ (ppm)	HMBC
1	--	--	--	--	--	172.2	2, 3, 15
2 a	2.29	1H	ddd	2b, 3	16.6, n.d.		
2 b	1.99	1 H	ddd	2a, 3	16.7, n.d.	33.7	3, 4, 26
3	2.20	2 H	m	2, 4, 26	--	22.2	2, 4, 5, 26
4	5.09	1H	ddq	3, 26	8.4, 5.2, 1.4	125.6	2, 3, 5, 6, 26
5	--	--	--	--	--	137.3	3, 4, 6, 26, 27
6	2.47	1H	dq	7, 27	10.5, 6.7	48.5	4, 7, 25, 26, 27
7	3.26	1H	br m	OH, 6, 8	--	78.1	6, 8, 9, 28
8	1.74	1H	qt	7, 27, 28	7.3, n.d.	39.3	7, 10, 28
9	5.89	1H	d	10	10.0	67.6	7, 28, 11
10	5.53	1H	ddt	9, 11	10.7, 10.0, 1.3	128.5	9, 11, 12, 13
11	6.38	1H	t	10, 12	11.3	126.2	9, 10, 12, 13
12	6.53	1H	t	11, 13	11.5	124.4	10, 11, 13, 14
13	5.35	1H	ddt	12, 14	10.8, 10.2, 1.4	137.6	11, 12, 14, 15, 29
14	2.98	1H	tq	13, 15, 29	10.2, 6.7	35.0	12, 13, 15, 29, 30
15	5.07	1 H	d	14	10.3	82.5	12, 13, 14, 17, 29, 30
16	--	--	--	--	--	134.0	14, 15, 17, 18, 30
17	6.10	1H	dq	18, 30	10.9, 1.4	129.7	15, 16, 18, 19, 30
18	6.40	1H	ddt	17,19, 20	15.0, 10.9, 1.3	131.7	16, 17, 20, 30
19	5.76	1H	dt	18, 20	15.1, 7.6	128.2	17, 20, 30
20a	2.40	1H	dd	19, 20b	14.1, 7.8		
20b	2.23	1H	dd	19, 20a	14.2, 7.5	38.6	18, 19, 32
21						72.1	18, 19, 20, 22, 31, 32
22	1.89	1H	dq	23, 31	10.0, 6.8	43.1	20, 21, 23, 24, 31, 32
23	3.91	1H	ddd	22, 24	10.0, 7.6, 3.1	83.8	22, 24, 25, 31
24a	1.85	1H	ddq	23, 24b, 25	14.5, 7.4, 3.1		
24b	1.62	1 H	dq	23, 24a, 25	14.6, 7.4	27.1	22, 23, 25
25	1.01	3 H	t	24	7.4	9.2	23, 24
26	1.42.	3 H	s	3, 4	-	11.3	3, 4, 5, 6
27	1.12	3 H	d	6	6.7	16.5	5, 6
28	1.08	3 H	d	8	7.3	12.5	7, 8, 9
29	0.87	3 H	d	14	6.7	16.6	13, 14, 15
30	1.79	3 H	d	17	0.7	12.0	14, 15, 16, 17, 18, 19
31	1.02	3 H	d	22	6.9	11.6	21, 22, 23, 32
32a	2.73	1 H	d	32b	16.5		
32b	2.36	1H	d	32a	16.6	42.9	21, 22, 31, 33
33	--	--	--	--	--	170.2	32
34	--	--	--	--	--	157.3	9
NH2	4.67	2 H	br s	--	--	--	--
$\mathrm{C} 7-\mathrm{OH}$	2.17	1H	br s	7	--	--	--
$\mathrm{C} 21-\mathrm{OH}$	1.91	1H	s	--	--	--	--

Table S-6 Comparison of the ${ }^{13} \mathrm{C}$ NMR shifts $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of leiotermatolide and the synthetic samples $\mathbf{1}$ and $\mathbf{2}$. For this particular comparison, the spectra were calibrated on the well resolved signal C13 ($\equiv 137.869 \mathrm{ppm}$); if the spectra of the synthetic samples are calibrated on $\mathrm{CD}_{2} \mathrm{Cl}_{2} \delta_{\mathrm{C}} \equiv 53.8 \mathrm{ppm}$, as otherwise practiced in this paper (see General), all shifts systematically deviate by +0.25 ppm .

Atom No	Literature	Synthetic 1 @ $\mathbf{4} \mathbf{~ m g}$ in 0.3 mL	Synthetic 1 @ 0.8 mg in 0.3 mL	Synthetic 2
1	172,4	172,4	172,4	172,4
2	34,0	34,0	34,0	34,0
3	22,5	22,5	22,5	22,4
4	125,9	125,9	125,9	125,8
5	137,5	137,5	137,5	137,5
6	48,7	48,8	48,8	48,7
7	78,4	78,4	78,4	78,4
8	39,6	39,5	39,5	39,5
9	68,0	67,9	67,9	67,9
10	128,8	128,7	128,7	128,7
11	126,4	126,4	126,4	126,4
12	124,7	124,6	124,6	124,6
13	137,9	137,9	137,9	137,9
14	35,3	35,2	35,2	35,2
15	82,8	82,8	82,7	82,7
16	134,2	134,1	134,2	134,2
17	130,0	130	129,9	129,9
18	131,8	131,8	131,9	131,9
19	128,5	128,6	128,4	128,7
20	38,9	38,8	38,8	38,8
21	72,3	72,3	72,3	72,3
22	43,4	43,4	43,4	43,3
23	84,1	84,1	84	84
24	27,4	27,4	27,4	27,3
25	9,4	9,4	9,4	9,4
26	11,5	11,5	11,5	11,5
27	16,8	16,8	16,8	16,7
28	12,7	12,7	12,7	12,7
29	16,8	16,8	16,8	16,8
30	12,2	12,2	12,2	12,2
31	11,8	11,8	11,8	11,8
32	43,1	43,0	43,0	43,1
33	170,4	170,5	170,4	170,4
34	157,6	157,6	157,5	157,5

The following color-coded spectra show a direct comparison between the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right.$ and 150 MHz , respectively) of natural leiodermatolide (black) depicted in the Supporting Information of the isolation paper (I. Paterson, S. M. Dalby, J. C. Roberts, G. J. Naylor, E. A. Guzman, R. Isbrucker, T. P. Pitts, P. Linley, D. Divlianska, J. K. Reed, A. E. Wright, Angew. Chem. Int. Ed. 2011, 50, 3219-3223) with the recorded spectra of synthetic 1 (red) and synthetic 2 (blue).

[^0]: ${ }^{1}$ G. M. Sheldrick, Acta Cryst. Sect. A: Found. Crystallogr. 2008, A64, 112-122.

[^1]: ${ }^{2}$ R. Baker, J. L. Castro, J. Chem. Soc. Perkin Trans. 1, 1990, 47-65.
 ${ }^{3}$ D. Menche, J. Hassfeld, J. Li, K. Mayer, S. Rudolph, J. Org. Chem. 2009, 74, 7220-7229.

[^2]: ${ }^{4}$ T. Inoue, J.-F. Liu, D. C. Buske, A. Abiko, J. Org. Chem. 2002, 67, 5250-5256.

[^3]: ${ }^{5}$ J. R. Gage, D. A. Evans, Org. Synth. 1989, 68, 83-91.

[^4]: ${ }^{6}$ D. A. Evans, H. P. Ng, J. S. Clark, D. L. Rieger, Tetrahedron, 1992, 48, 2127-2142.
 ${ }^{7}$ H. J. Bestmann, K. H. Koschatzky, W. Schaetzke, J. Suess, O. Vostrowsky, Liebigs Ann. Chem. 1981, 9, 1705-1720.

[^5]: ${ }^{8}$ C. C. Cummins, Chem. Commun. 1998, 1777-1786.
 ${ }^{9}$ A. Fürstner, C. Mathes, C. W. Lehmann, Chem. Eur. J. 2001, 7, 5299-5317.

[^6]: ${ }^{10}$ Prepared according to: B. R. Raimundo, C. H. Heathcock, Synlett 1995, 1213-1214.

[^7]: ${ }^{11}$ E. Canales, K. G. Prasad, J. A. Soderquist, J. Am. Chem. Soc. 2005, 127, 11572-11573.
 ${ }^{12}$ Efforts to recover the borane by treatment with N-methylpseudoephedrine (as reported in ref. [11]) failed, since the obtained precipitate always contained significant quantities of the product and impurities.

[^8]: ${ }^{13} \mathrm{Zn}(\mathrm{Cu} / \mathrm{Ag})$ was prepared according to: W. Boland, N. Schroer, C. Sieler, M. Feigel, Helv. Chim. Acta 1987, 70, 1025-1040. Reproducible results were obtained when all solvents used for preparation or washing were carefully degassed by bubbling Argon trough the solvents for 30 min .

[^9]: ${ }^{14}$ H. Nöth, H. Vahrenkamp, J. Organomet. Chem. 1968, 11, 399-405.

